مهندسی پزشکی

مقالات مهندسی پزشکی

مهندسی پزشکی

مقالات مهندسی پزشکی

حسگر یک وسیله ی الکتریکی است که تغییرات فیزیکی یا شیمیایی را اندازه گیری می کند وآنها را به سیگنالهای الکتریکی تبدیل می نماید. حسگرها درواقع ابزار ارتباط ربات با دنیای خارج وکسب اطلاعات محیطی ونیز داخلی می باشند، ویا به طور کلی ابزارهایی هستند که تحت شرایط خاص ازخود واکنشهای پیش بینی شده ومورد انتظار نشان می دهند. شاید بتوان دماسنج را جزء اولین حسگرهایی دانست که بشرساخت .          ساختار کلی یک حسگر: درطراحی یک حسگر دانشمندان علوم مختلف مانند بیوشیمی، بیولوژی، الکترونیک، شاخه های مختلف شیمی و فیزیک حضوردارند. قسمت اصلی یک حسگرشیمیایی یا زیستی عنصرحسگر آن می باشد. عنصرحسگر در تماس با یک آشکارساز است. این عنصرمسئول شناسایی و پیوند شدن با گونه ی مورد نظر در یک نمونه ی پیچیده است. سپس آشکارساز سیگنالهای شیمیایی را که در نتیجه ی پیوند شدن عنصرحسگر با گونه ی موردنظر تولید شده است را به یک سیگنال خروجی قابل اندازه گیری تبدیل می کند. حسگرهای زیستی بر اجزای بیولوژیکی نظیرآنتی بادی ها تکیه دارند. آنزیمها ، گیرنده ها یا کل سلولها می توانند به عنوان عنصر حسگرمورد استفاده قرار گیرند. خصوصیات حسگرها: یک حسگرایده آل باید خصوصیات زیررا داشته باشد : 1. سیگنال خروجی باید متناسب با نوع و میزان گونه ی هدف باشد. 2. بسیار اختصاصی نسبت به گونه مورد نظر عمل کند. 3. قدرت تفکیک و گزینش پذیری بالایی داشته باشد. 4. تکرارپذیری و صحت بالایی داشته باشد. 5. سرعت پاسخ دهی بالایی داشته باشد. ( درحد میلی ثانیه ) 6. عدم پاسخ دهی به عوامل مزاحم محیطی مانند دما ، قدرت یونی محیط و …   نانوحسگرها با پیشرفت علم در دنیا و پیدایش تجهیزات الکترونیکی و تحولات عظیمی که در چند دهه ی اخیر و درخلال قرن بیستم به وقوع پیوست نیاز به ساخت حسگرهای دقیق تر،کوچکتر و دارای قابلیتهای بیشتر احساس شد. امروزه از حسگرهایی با حساسیت بالا استفاده می شود به طوریکه در برابر مقادیر ناچیزی از گاز، گرما و یا تشعشع حساس اند. بالا بردن درجه ی حساسیت، بهره و دقت این حسگرها به کشف مواد و ابزارهای جدید نیاز دارد. نانو حسگرها، حسگرهایی در ابعاد نانومتری هستند که به خاطرکوچکی و نانومتری بودن ابعادشان از دقت و واکنش پذیری بسیار بالایی برخوردارند به طوری که حتی نسبت به حضور چند اتم از یک گاز هم عکس‌العمل نشان می دهند. انواع نانو حسگرها: نانوحسگرها براساس نوع ساختارشان به سه دسته ی نقاط کوانتومی ، نانولوله های کربنی و نانوابزارها تقسیم بندی می شوند: 1.استفاده از نقاط کوانتومی درتولید نانو حسگرها: نقاط کوانتومی به عنوان بلورهای نیمه هادی کوچک تعریف می شوند. با کنترل ابعاد نقاط کوانتومی، میدان الکترومغناطیسی نور را دررنگها و طول موجهای مختلف، منتشرمی کند. به عنوان مثال، نقاط کوانتومی از جنس آرسنیدکادمیوم با ابعاد 3 نانومتر نور سبز منتشر می کند؛ درحالی که ذراتی به بزرگی 5/5 نانومتر از همان ماده نور قرمز منتشرمی کند. به دلیل قابلیت تولید نور در طول موجهای خاص نقاط کوانتومی ، این بلورهای ریز در ادوات نوری به کارمی روند. دراین عرصه از نقاط کوانتومی در ساخت آشکارسازهای مادون قرمز، دیودهای انتشار دهنده ی نورمی توان استفاده نمود. آشکارسازهای مادون قرمز از اهمیت فوق العاده ای برخوردارند. مشکل اصلی این آشکارسازها مسئله ی خنک سازی آنهاست. برای خنک سازی این آشکارسازها از اکسیژن مایع وخنک سازی الکترونیکی استفاده می شود. این آشکارسازها برای عملکرد صحیح باید دردماهای بسیار پائین، نزدیک به 80 درجه کلوین کارکنند، بنابراین قابل استفاده در دمای اتاق نیستند، درصورتی که از آشکارسازهای ساخته شده با استفاده از نقاط کوانتومی می توان به راحتی در دمای اتاق استفاده کرد. 2. استفاده ازنانولوله ها درتولید نانوحسگرها: نانو لوله های کربنی تک دیواره و چند دیواره به علت داشتن خواص مکانیکی و الکترونیکی منحصر به فردشان کاربردهای متنوعی پیدا کردند که از جمله می توان به استفاده از آنها به عنوان حسگرهایی با دقت بسیار بالا برای تشخیص مواد در غلظتهای بسیار پائین و با سرعت بالا اشاره کرد. به طورکلی کاربرد نانو لوله ها در حسگرها را می توان به دو دسته تقسیم کرد: الف ) نانولوله های کربنی به عنوان حسگرهای شیمیایی: این حسگرها می توانند دردمای اتاق غلظتهای بسیارکوچکی از مولکولهای گازی با حساسیت بسیاربالا را آشکارسازی کنند. حسگرهای شیمیایی شامل مجموعه ای از نانولوله های تک دیواره هستند و میتوانند مواد شیمیایی مانند دی اکسید نیتروژن ( NO2 ) وآمونیاک ( NH3 ) را آشکارکنند. هدایت الکتریکی یک نانولوله نیمه هادی تک دیواره که درمجاورت ppm200 از NO2 قرارداده می شود، می تواند در مدت چند ثانیه تا سه برابر افزایش یابد و به ازای اضافه کردن فقط 2% NH3 هدایت دو برابر خواهد شد. حسگرهای تهیه شده ازنانولوله های تک دیواره دارای حساسیت بالایی بوده ودردمای اتاق هم زمان واکنش سریعی دارند. این خصوصیات نتایج مهمی درکاربردهای تشخیصی دارند. ب) نانولوله های کربنی به عنوان حسگرهای مکانیکی: هنگامی که یک نانولوله توسط جسمی به سمت بالا یا پائین حرکت می کند، هدایت الکتریکی آن تغییر می یابد. این تغییر در هدایت الکتریکی، با تغییر شکل مکانیکی نانولوله کاملا ً متناسب است. این اندازه گیری به وضوح امکان استفاده از نانولوله ها را به عنوان حسگرهای مکانیکی نشان می دهد. یا می توان با استفاده از مواد واسط مانند پلیمرها در فاصله ی میان نانولوله های کربنی وسیستم، نانولوله های کربنی را برای ساخت بیوحسگرها توسعه داد. شبیه سازی های دینامیکی نشان می دهد که برخی پلیمرها مانند پلی اتیلن می توانند به صورت شیمیایی با نانولوله کربنی پیوند یابند. همچنین مولکول بنزن نیز می تواند به وسیله ی پیوندهای واندروالس روی نانولوله ی کربنی جذب شود. این تحقیقات کاربردهای بسیار متنوع و وسیع نانولوله ها ی کربنی را نشان می دهد. تحقیق دراین زمینه هنوزدرحال توسعه وپیشرفت است ومطمئنا ً درآینده ای نه چندان دور شاهد به کارگیری آنها درابزارها و صنایع مختلف خواهیم بود. 3.استفاده ازنانو ابزارها درتولید نانوحسگرها: با استفاده از این حسگرها شناسایی مقادیر بسیار کم آلودگی شیمیایی یا ویروس و باکتری در سامانه ی کشاورزی وغذایی ممکن است. تحقیقات درزمینه ی نانوابزارها جزء پژوهشهای علمی به روز دنیاست. نانو حسگرها و کنترل آلودگی هوا: یکی از نیازهای مهم و اساسی در ارتباط با کنترل آلودگی محیط زیست، پایش مستمرآلودگی هواست. با استفاده از نانوحسگرها پیشرفت مؤثری در زمینه ی کنترل آلودگی هوا صورت گرفته است. یکی از این راهکارها اختراع غبارهای هوشمند می باشد. غبارهای هوشمند مجموعه ای از حسگرهای پیشرفته به صورت نانو رایانه های بسیارسبک هستند که به راحتی ساعتها درهوا معلق باقی می مانند. این ذرات بسیار ریز از سیلیکون ساخته می شوند و می توانند ازطریق بی سیم موجود درخود اطلاعات موجود در خود را به یک پایگاه مرکزی منتقل کنند. سرعت این انتقال حدود یک کیلوبایت در ثانیه است. هم چنین حسگرهایی از جنس نانولوله های تک لایه ساخته شده اند که می توانند مولکولهای گازهای سمی را جذب کنند و همچنین آنها قادر به شناسایی تعداد معدودی از گازهای مهلک موجود درمحیط هستند. محققان معتقدند این نانوحسگرها برای شناسایی گازهای بیوشیمیایی جنگی و آلاینده های هوا کاربرد خواهند داشت. مبارزه با انتشار گازهای سمی: انتشار و پخش گازهای مهلک و سمی یکی از خطرات روزمره زندگی صنعتی است. متأسفانه هشدار دهنده‌های موجود در صنعت اغلب بسیار دیر موفق به شناسائی این‌گونه گازهای نشتی می‌شوند. نانوحس‌گرها که از نانوتیوب‌های تک لایه به ضخامت حدود یک نانومتر ساخته شده‌اند و می‌توانند مولکول‌های گازهای سمی را جذب کنند. آنها هم‌چنین قادر به شناسائی تعداد معدودی از مولکول‌های گازهای مهلک در محیط هستند. محققان مدعی‌اند که این حس‌گرها برای شناسائی به هنگام گازهای بیوشیمیائی جنگی، آلاینده‌های هوا و حتی مولکول‌های آلی موجود در فضا کاربرد خواهند داشت. جذابیت‌های نانوحسگرها به طور صریح این قبیل مزایای نانوحسگرها باعث شده است که به عنوان فرصتی وسوسه‌انگیز برای بازار تلقی شوند. نانوحسگرها به طور ذاتی کوچک‌تر و حساس‌تر از سایر حسگرها می‌باشند. همچنین این ظرفیت را دارند که قیمت تمام شدة آنها کمتر از قیمت تمام‌شده حسگرهای موجود در بازار باشد. برای مثال اگر قیمت حسگرهای صنعتی متداول امروزی، چند 10 هزار دلار باشند برای نانوحسگرهایی که بتوانند همان کار را انجام دهند به صورت نظری چند 10 دلار برآورد می‌شود. نانوحسگرها همچنین هزینه جاری را نیز کاهش می‌دهند؛ زیرا به طور ذاتی برق کمتری مصرف می‌کنند. درنهایت از آنجایی که نانوحسگرها هزینه‌های خرید و اجرا را کاهش می‌دهند؛ ممکن است به‌کارگیری آنها به صورت آرایه‌ها و توده‌ها مقرون به صرفه باشد و همچنین بتوانند به شکل فراگیر و حتی اضافی در قطعات کاربرد پیدا کنند؛ به طوری‌که اگر یک نانوحسگر از کار بیفتد و از مدار خارج شود بتوان از آن صرف نظر کرد و ضریب امنیت در حد مطلوبی باقی بماند، زیرا تعداد زیادی نانوحسگر دیگر در سیستم می‌توانند کار آن را به عهده بگیرند. در بخش نظامی و امنیت ملی نیز احتیاج به حسگرهای بسیار حساسی است که بتوانند به صورت گسترده توزیع شوند تا به کمک آنها بتوان تشعشعات و بیوسم‌های زیستی را مورد بررسی قرار داد. در زمینه پزشکی نیاز به حسگرهای بسیار حساسی به صورت آزمایشگاه‌هایی بر روی تراشه است که بتوانند کوچک‌ترین علائم نشان‌دهندة سرطان را شناسایی کنند. در صنایع هوافضا احتیاج به نانوحسگرهایی است که در بدنة هواپیماها به عنوان سیستم هشداردهنده ثابت قرار بگیرند و مشخص کنند که چه زمانی هواپیما احتیاج به تعمیرات دارد. در صنایع اتومبیل می‌توان از نانوحسگرها برای مصرف بهینه سوخت استفاده کرد. همچنین در اتومبیل‌های گران‌قیمت می‌توان برای بهبود وضعیت صندلی و وضعیت کنترل‌های موجود به تناسب حالت‌های مختلف بدن، این نانوحسگرها را مورد استفاده قرار داد.   آینده نگری: می توان انتظار داشت که در آینده با ترکیب محرک ها و نانوحسگرها بتوان مواد هوشمندی ساخت که در فرآیندهای تولید سیستم های پیچیده نقش های مهمی ایفا کرده و فناوری جدید دیگری را پایه ریزی کنند. گرچه موانعی مانند افزایش قیمت، اطمینان پذیری از تاثیر آنها و نیز اطمینان از کاربرد آنها در زمینه های صلح آمیز نیز باید از سر راه برداشته شوند.
موافقین ۰ مخالفین ۰ ۰۴ آذر ۹۰ ، ۰۳:۵۷
Shahram Ghasemi
استفاده عملی از ماسفتها ماسفتهای المانهای اکترونیکی هستند با سه پایهGateDrainSourceدر مورد ماسفت منفیدر صورتی که اختلاف ولتاژی بین پایه های Gate و Source وجود داشته باشد ماسفت اجازه عبور جریان از Drain به Source به را میدهدبه طور عملی از ماسفت اینگونه استفاده کنیدپایهِDrain ماسفت را به مصرف کننده وصل کنید و مثبت منبع تغذیه را به پایه دیگر مصرف کننده متصل کنیدپایه Sourse ماسفت را به منفی (زمین) منبع تغذیه متصل کنید حال با اعمال اختلاف ولتاژ به Gate ماسفت نسبت به پایه Source ان مصرف کننده(مثلا موتور الکتریکی) شروع به کار خواهد کردطرز کار ماسفت شبیه ترانیزیستور ها و رله هاست چه زمانی از ماسفت استفاده کنیم ؟ماسفتهایی با قابلت سویچ سریع( fast switching) وجود دارند بنابراین زمانی که نیاز به سویچ سریع هست مثل زمانی که میخواهیم موج pwm تولید کنیم ماسفتها مناسب هستند.ماسفتهای با قابلیت عبور شدت جریان زیاد وجود دارند بنابراین میتوانند جایگزین رله ها شوند.
موافقین ۰ مخالفین ۰ ۰۴ آذر ۹۰ ، ۰۳:۵۷
Shahram Ghasemi
یک اسیلاتور کریستالی مداری الکترونیکی است که از رزونانس مکانیکی یک کریستال در حال لرزش پیزوالکتریکی بهره می برد تا سیگنال الکتریکی با فرکانس بسیار دقیقی بوجود آورد. این فرکانس معمولا برای داشتن حسی از زمان (مانند در ساعت های مچی کوارتز) استفاده می شود تا سیگنال ساعتی پایدار برای مدارت مجتمع دیجیتال فراهم کند و نیز فرکانس ها را در فرستنده های رادیویی پایدار (Stable) کند. برای مطالعه بیشتر به ادامه متن رجوع فرمایید   استفاده از تقویت کننده و فیدبک فرم دقیقی از یک اسیلاتور الکترونیکی است. به کریستال استفاده شده در آن برخی مواقع "کریستال زمان سنجی (timing crystal)" گفته می شود. در دیاگرام های شماتیکی، گاهی کریستال را با XTAL نمایش می دهند. فهرست- کریستال های برای اهداف زمان سنجی- کریستال ها و فرکانس- رزونانس سری یا موازی- فرکانس های ساختگیSpurious frequencies- یادداشت کریستال های برای اهداف زمان سنجی یک کریستال 4MHz کوچک کوارتز که داخل پکیج هم اندازه ی خود (HC-49/US) واقع شده است یک کریستال جامدی است که در آن اجزای تشکیل دهنده، اتم ها، مولکول ها، یا یون ها در یک ترتیب منظمی بسته بندی شده اند و الگوی تکراری خود را در هر سه بعد فضایی گسترش می دهند. تقریبا هر چیزی که از مواد الاستیک ساخته شده می تواند مانند کریستال مورد استفاده قرار گیرد، با ترنسدیوسرهای (مبدل ها) متناسب، زیرا تمامی اجسام دارای فرکانس رزونانس طبیعی لرزش هستند. برای مثال، فولاد الستیسیته بالایی دارد و سرعت صوت در آن بالاست. این اغلب در فیلترهای مکانیکی، قبل از کوارتز، استفاده می شد. فرکانس رزونانس به اندازه، شکل، الاستیسیته و سرعت صوت در آن ماده بستگی دارد. کریستال های فرکانس بالا معمولا به شکل صفحه مستطیلی ساده ای بریده می شوند. کریستال های فرکانس پایین، مثل آن هایی که در ساعت های دیجیتالی استفاده می شود، به شکل یک دیاپازون (tuning fork) بریده می شوند. برای کاربردهایی که زمان سنجی بسیار دقیقی نمی خواهند از یک رزونانس کننده سرامیکی ارزان به جای کریستال کوارتز استفاده می شود. وقتی که یک کریستال کوارتز به طور صحیح بریده و سوار شد، می توانیم با قرار دادن آن در یک میدان الکتریکی (اعمال ولتاژ به الکترودی نزدیک یا روی کریستال) باعث خم شدن آن شویم. این ویژگی به نام پیزوالکتریک بودن (piezoelectricity) معروف است. وقتی میدان برداشته شود، کوارتز با بازگشت به شکل اولیه اش یک میدان الکتریکی تولید می کند که این می تواند یک ولتاژ تولید کند. این رفتار کریستال کوارتز شبیه مداری متشکل از یک سلف، خازن و مقاومت (RLC Circuit) با فرکانس رزونانسی دقیق است. کوارتز مزیت دیگری نیز دارد و آن کم بودن تغییرات اندازه آن با تغییرات دما است. لذا فرکانس رزونانس صفحه ی مان که به اندازه ی آن وابسته است، تغییر چندانی نمی کند. این یعنی که ساعت کوارتز، فیلتر یا اسیلاتر دقیق خواهد ماند. برای کاربردهای حساس اسیلاتور کوارتز در ظرفی که دمای آن کنترل شده است (به نام اجاق کریستال crystal oven) سوار می شود، و همچنین می تواند روی جذب کننده های ضربه shock absorbers ، که برای جلوگیری از اختلال هایی که ناشی از لرزش های مکانیکی خارجی است، قرار بگیرد. کریستال های کوارتز زمان سنجی برای فرکانس های از ده ها کیلوهرتز تا ده ها مگاهرتز ساخته می شوند. سالانه بیشتر از دو میلیارد (2×109) کریستال تولید می شود. اکثر آن ها برای استفاده در ساعت های مچی، ساعت ها، و مدارات الکترونیکی هستند. هر چند، کریستال کوارتز داخل ابزارهای تست و اندازه گیری مثل شمارنده ها، سیگنال ژنراتورها و اسیلوسکوپ ها نیز پیدا می شود. کریستال ها و فرکانس FPRIVATE "TYPE=PICT;ALT=CrystalOsc" نماد شماتیک و مدار معادل یک کریستال کوارتز در یک اسیلاتور   مدار اسیلاتور کریستالی نوسان را با گرفتن سیگنال ولتاژی از رزونانس کننده ی کوارتز، تقویت آن و فیدبک کردن آن به رزونانس کننده، نگه می دارد. سرعت خم و راست شدن کوارتز فرکانس رزونانس است و توسط برش اندازه کریستال تعیین می شود. یک کریستال معمول زمان سنجی از دو صفحه ی رسانا با یک برش (slice) یا دیاپازونی از کریستال کوارتز که بین آنها ساندویچ شده تشکیل شده است. هنگام راه اندازی به مدار حول کریستال سیگنال نویز اتفاقی ac اعمال می شود و کاملا بسته شانس کسر اندکی از آن در فرکانس رزونانس کریستال خواهد بود. بنابراین کریستال شروع به نوسان کردن همگام با آن سیگنال می کند. اسیلاتور سیگنال خروجی از کریستال را تقویت می کند و لذا فرکانس کریستال محکم تر می شود و سرانجام خروجی غالب اسیلاتور را شامل می شود. فرکانس طبیعی در مدار و در کریستال کوارتز تمام فرکانس های ناخواسته را فیلتر می کند. یکی از مهمترین خصوصیات اسیلاتورهای کریستالی کوارتز این است که نویز در فاز بسیار کمی نشان می دهند. به زبانی دیگر سیگنال تولیدی آن ها یک تون خالص (pure tone) است. این آن ها را در مخابرات پر کاربرد می کند، جایی که سیگنال های پایدار مورد نیاز هستند. و همچنین در وسایل علمی که مرجع دقیق زمانی مورد نیاز است. فرکانس خروجی یک اسیلاتور کوارتز یا فرکانس اصلی رزونانس آن یا یک ضریبی از فرکانس رزونانس آن به نام فرکانس اور تون (overtone) است. Q (ضریب کیفیت) معمول برای یک اسیلاتور کوارتز بین 10^4 تا 10^6 تغییر می کند. Q ماکزیمم برای یک اسیلاتور کوارتز بسیار پایدار می تواند به اینگونه تقریب زده شود که f فرکانس رزونانس به MHz است: Q = 1.6 × 107/f تغییرات محیطی دما، رطوبت، فشار و لرزش می تواند فرکانس رزونانس یک کریستال کوارتز را تغییر دهد اما طراحی های گوناگونی وجود دارند که این اثرهای محیطی را کاهش می دهند. این ها شامل TCXO، MCXO و OCXO هستند مه در یادداشت توضیح داده شده اند. این طرح ها (به ویژه OCXO) وسایلی با پایداری کوتاه مدت عالی ایجاد می کنند. محدودیت هایی که در پایداری کوتاه مدت وجود دارد عمدتا به دلیل نویز اجزای الکترونیکی در مدار اسیلاتور است. پایداری بلند مدت با پیری کریستال محدود می شود.به دلیل پیری و فاکتورهای محیطی چون دما و لرزش، نگه داشتن فرکانس آنها درون یک از 10^-10 فرکانس نامی آن ها، حتی برای بهترین اسیلاتورهای کوارتز، بدون تنظیم مستمر بسیار سخت خواهد بود. به همین علت اسیلاتورهای اتمی (atomic oscillators) برای کاربردهایی که نیاز به پایداری و دقت بهتری دارند استفاده می شوند. اگر چه کریستال ها می توانند برای هر فرکانس رزونانسی ساخته شوند، به دلیل محدودیت های فنی، در عمل مهندسان مدار اسیلاتور کریستالی در حوالی فرکانس های استاندارد کمی طراحی می کنند مانند 10MHz، 20MHz و 40MHz. استفاده از مدار های مقسم فرکانس، چند برابر کننده ی فرکانس و phase locked loop برای سنتز کردن (ساختن) هر فرکانس دلخواه از فرکانس مرجع امکان پذیر است. مراقب باشید و تنها از یک اسیلاتور کریستالی در طراحی مدارات خود استفاده کنید تا از وقوع نمونه های ظریفی از خطاهای خودپایداری در الکترونیک (metastability in electronics) جلوگیری کنید. اگر این ممکن نیست تعداد کریستال اسیلاتورهای مجزا (PLLها) و دامنه های ساعتی متحد با آن های بایستی به شدت کم شوند با تکنیک هایی چون نصف کردن کلاک (Clock) موجود به جای استفاده از یک منبع جدید کریستالی. هر منبع مجزای کریستالی باید دقیقا توجیه شود زیرا هر کدام حالت های خطای محتمل غیر قابل رفعی را به علت برهم کنش چند کریستالی در وسیله، ایجاد می کنند Series or parallel resonance A quartz crystal provides both series and parallel resonance. The series resonance is a few kHz lower than the parallel one. Crystals below 30 MHz are generally operated at parallel resonance, which means that the crystal impedance appears infinite. Any additional circuit capacitance will thus pull the frequency down. For a parallel resonance crystal to operate at its specified frequency, the electronic circuit has to provide a total parallel capacitance as specified by the crystal manufacturer. Crystals above 30 MHz (up to >200 MHz) are generally operated at series resonance where the impedance appears at its minimum and equal to the series resistance. For this reason the series resistance is specified (
موافقین ۰ مخالفین ۰ ۰۴ آذر ۹۰ ، ۰۳:۵۷
Shahram Ghasemi
تولید اشعه X با نوار چسب کریسمس امسال که هدایای خود را باز می کنید مراقب باشید کندن نوار چسبها باعث ایجاد اشعه X میشود... تولید اشعه X با نوار چسبمترجم : امین روستاپورباز کردن سریع نوار چسب تولید نور می کند. آنهم از نوع اشعه ... کریسمس امسال که هدایای خود را باز می کنید مراقب باشید.کندن نوار چسبها باعث ایجاد اشعه X میشود.پژوهشگران در دانشگاه کالیفرنیا-لس آنجلس نشان دادهاند که کندن نوار چسبهای معمولی در خلاء اشعه X تولید می کند.میزان تولید آن به اندازه کافی بوده است که از آن برای عکسبرداری از استخوان انگشت یکی از دانشمندان شرکت کننده در این آزمایش استفاده شود."از برخی جهات ما کمی ترسیده بودیم" این نقل قولی است از Juan Escobar یکی از اعضای این تیم تحقیقاتی. اما او و همکارانش بزودی دریافتند که اشعه X تنها وقتی ساطع می شود که این آزمایش در شرایط خلاء انجام گیرد.لذا دلیلی برای ترس مردم در استفاده روزمره از نوار چسبها وجود ندارد.این نوع آزادسازی انرژی triboluminescence نام داشته و به صورت تابش نور مشاهده می شود.این پدیده زمانی روی می دهد که یک جامد(غالبا یک کریستال-بلور) شکسته شده یا مالیده شده یا خراشیده شود. این یک پدیده رازآلود است که از زمانهای قدیم مکرر مشاهده شده است.فرانسیس بیکنFrancis Bacon در سال 1605 میلادی آن را مشاهده کرده بود.او گزارش کرده است که خراشیدن یک تکه بلور شکر باعث ساطع شدن نور از آن شده است.توضیح این پدیده بدین صورت است که وقتی یک تکه کریستال خرد می شود این عمل باعث می شود تا بارهای الکتریکی مخالف و غیر همنام از یکدیگر جدا شده و فاصله بگیرند.سپس تخلیه الکتریکی ایجاد شده و این آزادسازی انرژی بصورت بارقه ای از نور نمایان می شود.Escobar اضافه میکند:از مدتها قبل حدود سال ۱۹۵۳ میلادی گروهی از دانشمندان روسی اظهار کرده بودند که کندن نوار چسب می تواند اشعه X تولید کند.ولی ما در باره نتایج آزمایشهای قدیمی آنها بسیار بد بین بودیم.تیم ما تصمیم گرفت تا این آزمایشات را با دقت بیشتری نجام دهد. و با کمال تعجب مشاهده نمودیم که در این آزمایش اشعه X به شکل پالسهای پر انرژی آزاد می شود.وقتی این پژوهشگران یک دریچه پلاستیکی را بروی مخزن ایجاد خلاء خود تعبیه کردند موفق شدند با استفاده از یک آشکارساز معمولی اشعه X دندانپزشکی از استخوان انگشت عکسبرداری کنند.نتایج آزمایش آنها در آخرین شماره مجله علمی Nature به چاپ رسیده است.Escobar اضافه میکند:از میان تخلیه های الکتریکی که انجام می شود فقط یک در ده هزار آنها تولید اشعه X میکند.انرژی هر تک پالس اشعه X در مدت زمانی معادل چند نانو ثانیه حدود ۱۵ کیلو الکترون ولت است.تصویر گرفته شده از استخوان انگشت با استفاده از نوار چسبانرژی اشعه Xمسقیما به مقدار بار الکتریکی بستگی دارد که در لحظه کندن نوار چسب در سطح آنتولید می شود.دانشمندان محاسبه نمودهاند که مقدار این بار الکتریکی ده ها بار بزرگتر از آن چیزی است که در آزمایشهای معمولی دیده می شود.Escobar می گوید:"ما دقیقا نمی دانیم چرا نوار چسب تا این حد بسیار زیاد باردار است."ماشین اشعه X نوارچسبی سایر دانشمندان را نیز گیج کرده است.Ken Suslick متخصص در mechanoluminescence از دانشگاه الینویز در Urbana-Champaign می گوید:" ما اصلا فکر نمیکردیم که اکثر انرژی مکانیکی قابلیت این را داشته باشد که به صورت اشعه X آزاد شود.چسب استفاده شده در نوار چسبها یک مایع غیر متبلور است نه یک کریستال.دقیقا چه چیزی باعث انقال بار الکتریکی شده است؟گروه های دهنده و گیرنده بار الکتریکی در این آزمایش کدامند؟"این مسئله هنوز دقیقا واضح نیست.پژوهشگران حدس می زنند که چگالی بالای بار الکتریکی تولید شده در این آزمایش به میزان کافی زیاد باشد که یک واکنش همجوشی هسته ای را استارت بزند.البته Michael Loughlin دانشمند علوم هستهای آزمایشگاه بین المللی همجوشی هسته ای ITERدر Cadarache فرانسه به این مسئله به دیده تردید می نگرد.ولی با وجود این اضافه می کند که اگر او اشتباه کرده باشد و این مورد امکان پذیر باشد.چنین سیستمی که قادر به استارت سریع یک همجوشی هسته ای باشد بسیار مفید فایده خواهد بود.در حال حاضر Ken Suslick تمایل دارد که سیستمهای mechanoluminescence را که در آزمایشگاه خود به روی آنها کار کرده است را مجددا مورد برسی قرار دهد.در این حینEscobar و همکارانش قصد دارند تا آزمایش خود را با سایر انواع چسبها انجام دهند و اثرات مشابه احتمالی را بررسی کنند.ولی مهمترین چالش پیش روی آنها این است که در یابند.این پدیده حقیقتا به چه دلیلی روی می دهد؟Escobar می گوید : "که این مسئله در راس اولویتهای آنها قرار دارد."
موافقین ۰ مخالفین ۰ ۰۴ آذر ۹۰ ، ۰۳:۵۷
Shahram Ghasemi
بافر . . .  بسیاری از المانهای الکترونیکی و به خصوص IC های دیجیتالی، قابلیت جریان دهی محدودی دارند و قطعاتی مانند موتور، لامپ ، رله و ... که مصرف جریان زیادی دارند را نمی توان مستقیم به آن ها متصل نمود.    علاوه بر این در بعضی مدارات ممکن است خروجی یک IC به ورودی چند IC دیگر داده شود. برای هر IC پارامتری به نام Fan-Out تعریف می شود که مشخص می کند خروجی IC به ورودی چند IC می تواند داده شود. در بعضی موارد که تعداد اتصالات بیشتر از Fan-out آی سی باشد، IC نمی تواند جریان لازم برای تغذیه ی تمام خروجی هایش را فراهم کند و خروجی اش افت می کند. در چنین مواردی می بایست از ICهای بافر استفاده نمود. به عبارت دیگر Fan-out بافر ها بسیار زیاد است. بافرها 2 وظیفه ی مهم را انجام می دهند: 1- منطقی کردن ولتاژ ورودی: اگر ولتاژ ورودی بین 2.5-0 ولت باشد، بر روی خروجی مربوطه ولتاژ 0 قرار گرفته و اگر بین 5-2.5 ولت باشد، 5 ولت روی آن قرار می گیرد. در حقیقت بر روی پایه های خروجی همواره ولتاژ 0 یا 5 ولت (وابسته به ولتاژ ورودی) قرار می گیرد.(درباره ی ولتاژ منطقی در بخش دیجیتال توضیح خواهیم داد) 2- تقویت جریان ورودی ها بر روی خروجی ها    پرکاربردترین بافر در کار ما آی سی 74245 می باشد که یک آی سی 20 پایه بوده و در آن 8 بافر مجزا تعبیه شده.   ترتیب پایه های این IC در شکل زیر آمده است.(هر فلش سبز 2طرفه یک بافر را نشان می دهد)    پایه ی 19 پایه ی"Enable" یا فعال ساز نام دارد، اگر این پایه به زمین (0 منبع تغذیه) وصل شود، بافرها فعال می شوند و اگر به 5ولت متصل شود، بافرها خاموش می شوند.(در شکل بالا، مثلاً A0 و B0 یک بافر هستند)   پایه ی 1 نیز که پایه ی جهت یا "Direction" نام دارد، جهت بافرها را نشان می دهد. مثلاً اگر DIR به زمین متصل شود، جهت بافر ازB به A (یعنی B ورودی و A خروجی است)و اگر به 5 ولت متصل شود، جهت بافر A به B می شود(یعنی A ورودی و B خروجی است). پایه ی 20هم به 5ولت و پایه ی 10 هم به زمین یا 0ولت متصل می شود.
موافقین ۰ مخالفین ۰ ۰۴ آذر ۹۰ ، ۰۳:۵۷
Shahram Ghasemi
اساس علمی کار زیردریایی بسیار ساده است.بیشتر زیردریایی های امروزی دارای دو بدنه می باشند: ـ بدنه ی داخلی - بدنه‌ ی خارجی آن گاه، در میان این دو بدنه مخزن هایی به صورت « صدف » جای دارند که در آن ها آب یا هوا، برای سنگین یا سبک کردن وزن زیردریایی، پر می شود. وقتی که زیردریایی، می خواهد در آب فرو رود؛ شیرهای بزرگ آن را باز می کنند، شیرهایی که به نام « کینگـستن » معروفند و در زیر مخزن ها قرار گرفته اند. بدین وسیله، آب وارد مخزن ها شده. در ضمن، هوای موجود در آن ها را از راه هواکش ها تخلیه می کند. این هوا کـش ها در بالای مخـزن ها قرارگرفته اند. هنگامی که آب بدین گونه وارد مخزن ها شود،‌ زیردریایی هم سنگین می شود و به اعماق آب فرو می رود. سپس وقتی که بخواهد از ته دریا بالا بیاید نخست هواکش ها را می بندند و با دستگاهی هوا را چنان با فشار وارد مخزن ها می کنند که آب درون آن ها از شیرهای « کینگـستن » دوباره بیـرون رانـده می شود. در این هنگام زیر دریایی سبک می شود و می تواند که به راحتی سر از زیر آب بیرون بیاورد. برای فرو بردن زیر دریایی به زیر آب یا برعکس، از چند سکان که افقی بر بدنه اش چسبیده اند، استفاده می شود. اما هنگام حرکت به پیش مانند یک کشتی معمولی فقط با یک سکان هدایت می شود.در زیردریایی، اتاقک های متعددی به وسیله ی کشیدن تیغه هایی عمود بر هم، درست کرده اند. برای ورود و یا خروج از آن ها انسان، باید از میان درهای کیپ و زود جفت شونده ای، بگذرد. این درها بسـیار سریع بسته می شوند و طوری ساخته شده اند که هرگز آب نمی تواند از آن ها به داخل نفوذ کند. افزون بر این ها، زیردریایی به چند دریچه‌ ی نجات و ریه های اطمینان مجهز است تا به هنگام بروز خطر، بتوان از آن ها استفاده کرد.
موافقین ۰ مخالفین ۰ ۰۴ آذر ۹۰ ، ۰۳:۵۷
Shahram Ghasemi
مدولاسیون در انواع وسیعی از سیستم های مهندسی مفهومی بنام مدولاسیون نقشی محوری ایفا می نماید. در حالت کلی ، یک سیستم مدولاسیون سیستمی است که در آن سیگنالی جهت کنترل پارامتری از سیگنالی دیگر بکار گرفته می شود . از میان کاربردهای مدولاسیون دامنه ، بکار گیری آن در سیستم های مخابراتی از اهمیت خاصی برخوردار است . بطور معمول برای هر یک از انواع کانالهای مخابراتی محدوده ای از فرکانس وجود دارد که برای ارسال سیگنال مناسبترین محدوده بشمار می رود . به عنوان مثال ، جو به سرعت سیگنالهای واقع در محدوده فرکانسی صوتی ( ۱۰Hz تا ۲۰Hz ) را تضعیف می کند، در حالیکه سیگنالهای واقع در محدوده فرکانسهای بالاتر را تا فواصل زیادی منتشر می کند. مدلا سیون در انواع وسیعی از سیستم های مهندسی مفهومی بنام مدولاسیون نقشی محوری ایفا می نماید. در حالت کلی ، یک سیستم مدولاسیون سیستمی است که در آن سیگنالی جهت کنترل پارامتری از سیگنالی دیگر بکار گرفته می شود . از میان کاربردهای مدولاسیون دامنه ، بکار گیری آن در سیستم های مخابراتی از اهمیت خاصی برخوردار است . بطور معمول برای هر یک از انواع کانالهای مخابراتی محدوده ای از فرکانس وجود دارد که برای ارسال سیگنال مناسبترین محدوده بشمار می رود . به عنوان مثال ، جو به سرعت سیگنالهای واقع در محدوده فرکانسی صوتی ( ۱۰Hz تا ۲۰Hz ) را تضعیف می کند، در حالیکه سیگنالهای واقع در محدوده فرکانسهای بالاتر را تا فواصل زیادی منتسر می کند. بدین لحاظ ،ارسال سیگنالهای صوتی مانند صحبت و یا موسیقی از طریق کانالهایی که از انتشار در جو زمین استفاده می کنند ، به کمک یک سیستم مدولاسیون که سیگنال مورد نظر را بر یک سیگنال حامل فرکانس بالا سوار می کند ، صورت می گیرد . یکی از سیستم های مدولاسیون معمول برای این منظور ” مدولاسیون دامنه سینوسی” است که در آن سیگنال حاوی اطلاعات ، مثلأ صحبت و یا موسیقی ، به منظور ایجاد تغییر در دامنه یک سیگنال حامل سینوسی که فرکانس آن در محدوده مناسب قرار دارد ، بکار می رود . با بکار گیری سیستم های مدولاسیون ، ارسال همزمان بیش از یک سیگنال با طیفهای رویهم افتاده نیز از طریق یک کانال مشترک امکان پذیر است ، به این عمل مولتی پلکس کردن گفته می شود. کاربرد دیگری از اصول مدولاسیون دامنه در فرایندی است که طی آن قطاری از پالسهای مستطیلی با فواصل و اندازه های مساوی در سیگنال حاوی اطلاعات ضرب می شود ، به این فرایند مدولاسیون دامنه پالس گفته می شود . این روش مدولاسیون ، علاوه بر اینکه خود دارای اهمیت زیادی در سیستم مخابراتی است ، ارتباط نزدیکی نیز با مفهوم نمونه برداری دارد. بر اساس این مفهوم تحت شرایطی خاص یک سیگنال می تواند توسط آن که با فواصل زمانی مساوی از یکدیگر قرار دارند معرفی شود. کاربرد عمده مدولاسیون دامنه در سیستم های پیوسته در زمان و در تبدیل سیگنالهای پیوسته در زمان به سیگنالهای گسسته در زمان است . انواع مهم دیگری از مدولاسیون نیز وجود دارد؛ مثلأ مدولاسیون فرکانس و یا فاز سینوسی ، که در آن سیگنال حاوی اطلاعات برای تغییر فرکانس و یا فاز یک حامل سینوسی حول یک فرکانس مرکزی به کار گرفته می شود مدولاسیون AM و FMدر سرویس پخش همگانی (( در منزل یا خودروی خود نشسته‌اید. رادیو را روشن می‌کنید تا به آن گوش دهید، گوینده رادیو در حال اعلام ساعات پخش برنامه‌ها وفرکانس رادیویی ایستگاه مربوطه است، پخش برنامه‌ها و فرکانس رادیویی ایستگاه مربوطه است، ” موج FM ، ردیف ….. موج AM فرکانس … مگاهرتز”. تا به حال فکر کرده‌اید که AM و FM یعنی چه؟چه تفاوتی دارند واصلا” به چه  کار می آیند؟ دراین شماره، شما را با دو روش  رایج مدولاسیون امواج رادیویی ومختصری هم ” سرویس پخش همگانی ” آشنا می‌کنیم.)) سرویس پخش همگانی یا  Broad casting  به معنای انتشار و ارسال صدا و یا تصویر (یا هر دو )به تعداد زیادی از گیرنده‌ها رادیو و یا تلویزیونی گفته می‌شود.    در ایالات متحده  اولین ایستگاه رادیویی پخش همگانی در سال۱۹۲۰ آغاز به کار نمود واز دو سال بعد از ان رفته  رفته ایستگاه رادیویی تجاری کار خود را شروع کردند. این روند همچنان ادامه یافت تا اینکه در سال ‌۲۰۰۳ تعداد ایستگاه‌های تجاری به ۸۰۴/۴ ایستگاه، تنها باند در   AMرسید. جالب آنکه تعداد ایستگاه‌های FM در سال ۱۹۸۳ از ایستگاه‌های AM پیشی گرفت، چنانکه تا سال ۱۹۹۸ تعداد آنها به ۱۷۹/۶ ایستگاه تجاری و ۲۴۰۰  ایستگاه غیر تجاری رسید. از طرف دیگر پخش همگانی تلویزیونی نیز که در همان دهه۱۹۲۰ آغاز به کارکرده بود، با مصادف شدن با جنگ  جهانی دوم، دستخوش اختلال و رشد کند شد اما امسال تا سال ۱۹۹۶ تعداد ایستگاه‌های پخش تلویزیونی تجاری به ۱۳۴۰  و غیر تجاری به ۶۰۰  ایستگاه رسید. * ماهیت روشهای مدولاسیون AM وFM  فرض کنید یک سر طنابی را به یک درخت گره زده‌ایم و سر دیگر را ۲۰ متر دورتر در دست گرفته اید. درصورتیکه شما دستتان(که طناب را با آن گرفته اید) به سمت بالا و پایین حرکت دهید، طناب در هوا با حرکات موج مانند بالا و پایین می‌رود و دامنه حرکات آن به یک میزان (بالا و پایین)تغییر می‌کند، خواه سرعت حرکت دست شما کم یا زیاد باشد. این حرکات نوسانی را به اصطلاح حالتی از مدوله‌سازی یا FM می‌نامند. امواج رادیویی نیز این نوسانات تشکیل ((امواج حامل)) راخواهند داد. در مقابلFM  روش دیگری وجود دارد که طی آن امواج حامل بر اساس تغییرات مقادیر دامنه امواج شکل می‌گیرندکه به این حالت مدولاسیون دامنه یاAM گفته می‌شود. این در حالیست که مقادیر اختلاف تغییرات در دامنه یکسان نبوده و دائما با یکدیگراختلاف داشته باشند. بنابراین در شیوهََAM در یک بازه زمانی دامنه امواج حامل دچار تغییرات می‌گردد در حالی که فرکانس ثابت وپایدار می‌ماند ولی در شیوه FM در یک بازه زمانی دامنه امواج حامل ثابت بوده ولی فرکانس آن متغییرمی باشد.(البته در حد بسیار کم). در روش AM  نرخ یا میزان  تغییرات  دامنهای  امواج بستگی  به نوسانات و زیر و بم صدای ارسالی خواهد داشت.  در FM نیز میزان تغییرات فرکانس امواج حامل وابسته به نوسانات و زیر و بم صدا خواهد بود.  در روش مدولاسیونFM   صداهای آهسته و حد پایین محو نشده و از بین نمی رود، چرا که سیگنالهای FM هر تن صدا را بر روی فرکانس جداگانه ارسال می‌کند،  بطوریکه در هر لحظه دو فرکانس مختلف را با یکدیگر ترکیب و همزمان ارسال می‌نماید که اصطلاحا به آن استریو می‌گویند و از این جهت کیفیت بسیار بالاتری نسبت به فروش AM  خواهد داشت. ازسوی دیگرارسال امواج AM نسبت به FM ازسهولت بیشتری برخوردارمی‌باشد چراکه این امواج  پیچیدگی‌های کمتری نسبت به FM  دارند. در مقابل، کیفیت خوب سیگنالها‌یFM که ناشی از دو فرکانسی بودن وپیچیدگی‌های‌ فرآیند پخش آن می‌باشد، دارای معایبی نیز است از جمله آنکه این امواج در فواصل دور قابل دریافت نمی‌باشند و زودتر دچار افت خواهند شد. اما در عوض سیگنالهای ساده AM به‌راحتی تا فواصل بسیار دور نفوذ کرده و قابل در یافت از سوی گیرنده هستند. پس به شکل خلاصه دریافتیم که امواج FM دارای کیفیت بالاتر ولی برد کوتاه‌تر هستند و امواجAM دارای کیفیتی متوسط، اما برد بالاتری FM می‌باشند. * مدولاسیون AM    مدولاسیون  AM یکی از روشهای پخش امواج رادیویی است که تقریبا در مدتی نزدیک به۳/۲ ازقرن بیستم، رایج‌ترین شیوه پخش امواج رادیویی خصوصا پخش همگانی بوده وهم اکنون نیزاستفاده وسیعی دارد. این شیوه بیشتر توسط ایستگاه‌های رادیویی که رویکرد پخش اخبار داشته ویا اغلب حجم مطالب مورد انتشارآنها را ((صحبت کردن)) تشکیل می دهد، مورد استفاده واقع می گردد . این درحالیست که ایستگاه‌های رادیویی عمومی وپخش موسیقی در دهه‌های اخیر ازشیوه  پخش FM استقبال نمودند.روشAM تا قبل از جنگ جهانی اول برای ایستگاه‌های رادیویی کلامی  و موسیقی استفاده می شد، اما در دهه بعد از جنگ اول جهانی فعالیت این دستگاه‌ها به اوج خود رسید. اولین دستگاه رادیوییAM  (تجاری) در ۱۹۲۰درپنسیلوانیای آمریکا آغاز به کار کرد. موسسه این ایستگاه شخصی به نام ((فرانک کان راد )) بود. برنامه‌های این ایستگاه در ابتدا شامل نمایش‌نامه‌ها، برنامه‌های طنز و سر گرمی وتا حدودی اخبار وموسیقی بود. نتشار امواج رادیویی AM  بر روی چندباند فر کانس مختلف به شرح زیر انجام می‌گیرد. موج بلند  LW:153-279 khz موج متوسط  MW:530-1.710 khz  موج کوتاه  SW:2.300-26.100  khz که موج کوتاه آن ( SW) خود به چندین تکه باند کوچکتر  تقسیم بندی می شود. تخصیص این باندها در وهله اول بر اساس تصمیم ((ITU )) یا اتحادیه بین المللی  مخابرات (بخش تنظیم مقررات رادیویی) و در مراحل بعدی بر اساس سازمان‌های تنظیم مقررات ملی هر کشور انجام می‌گیرد. برای مثال  در کشور ما، سازمان تنظیم مقررات و ارتباطات رادیویی و در ایالات متحده، FCC  یا کمیسیون فدرال ارتباطات عهده‌ دار انجام این تقسیم بندی و تخصیص می‌باشند.  - موج بلند ( LW ): این باند برای انتشار امواج رادیویی ایستگاه های تجاری در اروپا، آفریقا، آسیا، واسترالیا(هرسه منقطه ITU ) مورد استفاده قرار دارد. این در حالیست که در کشور آمریکا این باند به عنوان پشتیبان یا باند رزرو برای باند مسیریابی هوا نوردی در نظر گرفته شده است.  - موج متوسط (MW ): یکی از رایج‌ترین باندهای پخش امواج در ایستگاه‌های رادیویی AM است.  - موج کوتاه (SW) :  توسط ایستگاه‌هایی به کار می‌رود که قصد انتشار امواج خود را به فواصل بسیار دورتر از محل ایستگاه دارند.  امواج متوسط وکوتاه باندAM ، در شب و روز رفتار و اثرات متفاوتی را از خود نشان می‌دهند. در طول روز سیگنالهای AM بوسیله امواج (انتشار ) زمینی منتقل می‌شوند. در انعکاس از زمین امواج AM، سیگنالها قادرند تا چند صد کیلومتری ایستگاه ارسال شوند واین در حالیست که این امواج بعد از غروب آفتاب بر اساس تغییرات لایه یونسفر جو به شیوه انتشار آسمانی منتقل می‌گردند که در این حالت امواج منتشر شده از ایستگاه تا فواصل دورتری نسبت به روز قابل ارسال و دریافت خواهند بود. سیگنالهای رادیوییAM در فضاهای شهری می‌توانند براحتی توسط ساختمانهای مرتفع وآسمان خراش‌ها گسیخته ومختل شوند. به علاوه دیگر منابع انتشار امواج رادیویی نیز می توانند  اثرات مخرب و نامطلوبی بر فرآیند انتقال این امواج بر جای گذارند. قسمت بالای شکل (۱) نشان دهنده سیگنال صوتی است که بر روی امواج حامل سوار شده وبه صورتAM تلفیق می‌شوند. در قسمت پایین همین شکل نتیجه تلفیق دو موج یاد شده نشان داده شده است و در حقیقت موج خروجی از فرستنده AMبه شکل نهایی فوق در خواهد آمد.  بنابر این یک فرستنده AM دستگاهی است که با تلفیق و سوار کردن سیگنالهای صوتی بر روی امواج حامل، یک موج AM را تشکیل داده و از طریق آنتن، آن را منتشر می‌نماید. یک گیرنده‌ AM نیز مجهز به یک قسمت فیلتر و یک قسمت آشکارساز می‌باشد که عمل جداسازی سیگنالهای صوتی از امواج حامل و آشکار نمودن آنها را برعهده دارد.  * مدولاسیون FM   (( ادوین ار مستر انگ )) یک مخترع و مهندس الکترونیک  در آمریکا بود. وی در سال ۱۸۹۰ به دنیا آمد، مهندسی خود را از دانشگاه کلمبیا گرفت. وی همچنین  یکی از فعالیترین مخترعین  در عصر رادیو بود، به طوری که ((مدولاسیون فرکانسی )) رادیو یا (FM ) بزگترین اختراع وی به شمار می‌رود از دیگر اختراعات ادوین در دوران دانشکده، اختراع سیستم احیا کننده مدار درسال ۱۹۱۴بود. با این حال حقیقت غم انگیز در  مورد او این بود که بسیاری از اختراعات وی بعداز  مرگش به نام دیگران ثبت شد. اما آرمتسرانگ در سال ۱۹۳۳روش مدولاسیون فرکانسی رابه نام خود ثبت کرد. مزیت این روش در زمینه انتقال اصوات بوسیله امواج رادیویی، در  کیفیت و وضوح  بالاتر آن نسبت به روشهای AM قبل از آن بود. آرمسترانگ پس از موفقیت در آزمایشهای مقدماتی توانست تا نظر FCC را برای اختصاص یک باند ویژه رادیویی به نام FM جلب کند این باند ابتدا در محدوده ۴۲ الی   ۵۰Mhzقرار داشت.  نخستین  ایستگاه  رادیو پخش همگانی   FMدر سال  ۱۹۳۷ با مجوز کمیته ملی ارتباطات آمریکا (FCC)، با علامت (W1xoj )آغاز به کار کرد.          در آن زمان رادیوهای FM هنوز در محدوده فرکانسی ۴۲ تا۵۰ مگاهرتزکار می‌کردند، که پس ازجنگ جهانی دوم، کمیته در ۲۷ ژوئن ۱۹۴۵،گستره فرکانسی FM را به ۸۸ الی MHZ 106 تغییر داد. این تغییر به منظور جلوگیری ازتداخل‌های رادیویی و همچنین افزایش ظرفیت کانالها انجام شد.           به علاوه این تغییر، باعث تحمیل هزینه‌های زیادی به ایستگاه‌های پخشFM  به علت تعویض تجهیزات قدیمی خود با تجهیزات پخش  بر روی باندجدیدFM شد. در کشور ما ایستگاه‌های رادیویی پخش همگانی FM در محدوده فرکانسی ۸۸ الی ۱۰۸ مگاهرتز یعنی با گسترده‌ای برابر ۲۰ مگاهرتز کار می‌کنند. این گستره تقریبا به ۱۰۰ کانال تقسیم شده است، هر کانال با گستره‌ای برابر .۰/۲/mhz قسمت بالای شکل (۲) نمایشگر سیگنالهای صوتی سوارشده بر روی امواج حامل درروش FM است  و قسمت پایین آن در واقع نشان دهنده نتیجه نهایی تر کیب فوق بوده وسیگنال خروجی FM را نشان می‌دهد. روش FM نسبت به AM پهنای باند بیشتری را نیاز دارد، اما در مقابل سیگنالهای FM نسبت بهAM از نظر تداخل محفوظ‌تر و قوی‌تر می‌باشند.  همچنین  در برابر پدیده محو شدگی نیز خواهند داشت. برای دریافت امواج FM می‌بایست از یک گیرندهFM استفاده نمود و برای  شنیدن  هر کانال  باید گیرنده  را دقیقا بر روی فرکانس مرکزی هر کانال تنظیم کرد. برای مثال بالاترین کانال پهنایی برابر ۱۰۷/۸ مگا هرتز  الی  MHz  ۱۰۸  را در بر می‌گیرد، بنابراین بسامد مرکزی آن ۱۰۷/۹ مگا هرتز است. ایستگاه‌های پخش همگانی FM در کشورهای مختلف از توان خروجی بسیار بالایی درحدKW100   (کیلو وات ) ویا حتی بیشتر استفاده می‌شود با چنین توانی امواج رادیویی تا فواصل ۱۶۰کیلومتری از ایستگاه فرستنده بخوبی قابل دریافت و شنیدن می‌باشند. توان خروجی برخی از ایستگاه‌ها حتی تا ۳۰۰ یا ۵۰۰ کیلو وات نیز افزایش می‌یابد.
موافقین ۰ مخالفین ۰ ۰۴ آذر ۹۰ ، ۰۳:۵۷
Shahram Ghasemi
انواع پستهای فشار قوی از نظر عملکرد1- پستهای از نظر وظیفه ای که در شبکه بر عهده دارند به موارد زیر تقسیم بندی می شوند الف: پستهای افزاینده ولتاژاین پستها که به منظور افزایش ولتاژ جهت انتقال انرژی از محل تولید به مصرف بکار می روند معمولا در نزدیکی نیروگاهها ساخته می شوند.ب: پستهای کاهنده ولتاژ:این پستها معمولا در نزدیکی مراکز مصرف به منظور کاهش ولتاژ ساخته می شوند.ج: پستهای کلیدی:این پستهای معمولا در نقاط حساس شبکه سراسری و به منظور برقراری ارتباط بین استانهای مختلف کشور ساخته می شوندو معمولا رینگ انتقال شبکه سراسری را بوجود می آورند در این پستها تغییر ولتاژ صورت نمی گیرد و معمولا بخاطر محدود کردن تغییرات ولتاژ از یک راکتور موازی با شبکه استفاده می شود در بعضی از مواقع از این راکتورها با نصب تجهیزات اضافی مصرف داخلی آن پست تامین می شود.د: پستهای ترکیبی تا مختلطاین پستها هم به عنوان افزاینده یا کاهنده ولتاژ و هم کار پستهای کلیدی را انجام می دهند و نقش مهمی در پایداری شبکه دارند.2- انواع پستهای از نظر عایق بندیالف: پستهای معمولیپستهایی هستند که هادیهای فازها در معرض هوا قرار دارند و عایق بین آنها هوا می باشند و تجهیزات برقرار و هادیها بوسیله مقره هایی که بر روی پایه ها و استراکچرهای فولادی قرار دارند نصب می شوند این پستها در فضای آزاد قرار دارند در نتیجه عملکرد آنها تابع شرایط جوی می باشد.ب: پستهای گازی یا پستهای کپسولی ) G.I.S)در این پستها بجای استفاده از عایق های چینی و شیشه ای p.v.c از گاز هگزا فلوئور سولفور به عنوان عایق استفاده می شود این گاز نقاط برقدار را نسبت به یکدیگر و نسبت به زمین ایزوله می کند در این نوع پستها کلیه تجهیزات درون محفظه قرار دارند و طوری طراحی شده اند که گاز به بیرون نشت نکند از محاسن این پستها اشغال فضای کم می باشد و چون در فضای بسته قرار دارند تابع شرایط جوی نمی باشند و از معایب آنها به دلیل تکنولوژی بالای که دارند تعمیر و نگهداری آنها مشکل است.*** اجزاء تشکیل دهنده پستها ***1- سوئیچگیر(سوئیچ یارد):Switchgear 2- ترانسفورماتر قدرتower Transformer 3- ترانسفورماتور زمین:Ground Transformer 4- ترانسفورماتور مصرف داخلی:Staition Service ( T ) 5- جبران کننده ها:Componsators 6- تاسیسات جانبی:*سوئیچگیر:به مجموعه ای از تجهیزات که در یک ولتاژ معین رابطه بین دو باس را برقرار می کند گفته می شود وشامل قسمتهای زیر است:1- باسبار (شینه): Bas bar2- کلیدهای قدرت:Circuit Breaker 3- سکسیونرها: Disconector Switch 4- ترانس جریان: Current Transformer 5- ترانس ولتاژ:Voltage Transformer 6- مقره اتکایی: (P.I)7- برقگیر:Lighting Arester 8- تله موج: Line Trap 9- واحد منطبق کننده:L.M.U= Line Matching Unit * جبران کننده ها:1- خازنها2-سلفها(راکتورها)*تاسیسات جانبی:1- اتاق فرمان.2- اتاق رله .3- باطریخانه.4- دیزل ژنراتور.5- تابلو توزیع AC6- تابلو توزیع DC7- باطری شارژر.8- روشنایی اضطراری.9- روشنایی محوطه.10- تاسیسات زمین کردن و حفاظت در مقابل صاعقه.*بی خط:به موقعیت ست و تعداد ورودیها و خروجیها بستگی دارد و به مجموعه ای از تجهیزات که تشکیل یک خط ورودی یا خروجی را بدهند بی خط گفته می شود که شامل:2- برقگیر3- ترانس جریان4- لاین تراپ5- سکسیونر ارت6- سکسیونر خط7- ترانس جریان8- سکسیونر 9- بریکر10- سکسیونر*بی ترانس:به تعداد ترانسهای قدرت بستگی دارد و به مجموعه تجهیزاتی که ارتباط باسبار و ترانسفورماتور را برقرار می نماید بی ترانس گفته می شودو شامل:1- سکسیونر 2- بریکر3- سکسیونر4- ترانس جریان5- ترانس ولتاژ6- برقگیر
موافقین ۰ مخالفین ۰ ۰۴ آذر ۹۰ ، ۰۳:۵۷
Shahram Ghasemi
مدارهای ترتیبیهمونطور که میدونید هر وقت در مدار منطقی ، خروجی علاوه بر ورودی به حالت های گذشته مدار وابسته باشه رو مدار منطقی ترتیبی می نامیم . مدارهای ترتیبی بعنوان سلولهای حافظه معروف هستن ، چرا که در مدارهای ترتیبی بر خلاف مدارهای ترکیبی ، خروجی علاوه بر ورودی فعلی ، به ورودی های قبلی هم وابسته هست و قادر به حفظ اطلاعات و ذخیره ی اون هاست . فیلیپ فلاپ ها اساس مدارهای ترتیبی رو تشکیل می دند .مدارهای ترتیبی به دو نوع اساسی تقسیم می شن . مدارهای ترتیبی که با تغییر سیگنال ورودی ، تغییر می کنن رو مدار آسنکرون یا ناهمزمان و مدارهای ترتیبی که علاوه بر سیگنال ورودی به سیگنال گسسته زمانی وابسته هستند رو مدارهای سنکرون یا همزمان می نامند.عناصر حافظه که در مدارهای ترتیبی آسنکرون  بکار میره فیلیپ فلاپ هستش که این فلیپ فلاپ ها می تونن یک بیت اطلاعات رو بصورت باینری ذخیره کنن . مدار فیلیپ فلاپ دو تا خروجی داره که یکی برای مقدار عادی و دیگری برای مقدار مکمل بیت ذخیره شده بکار می ره.اطلاعات باینری به صورت های مختلف وارد فیلیپ فلاپ می شه که این امر منجر بوجود اومدن انواع مختلف فیلیپ فلاپ می شه.اساس گیت پایه فیلیپ فلاپ ها از نوع گیت NAND , NOR هستش و فیلیپ فلاپ های مختلف بر اساس گیت پایه ای NAND یا NOR  ساخته می شن.یکی از انواع فیلیپ فلاپ ها فیلیپ فلاپ نوع RS آسنکرون هستش که دیاگرام لاجیک ، سمبل مداری و جدول صحت نوع NOR اون رو در شکل زیر می بینید.با توجه به جدول صحت و عملکرد فیلیپ فلاپ نکات زیر قابل توجه هستش :1- باصفر شدن ورودی RوS در صورتیکه مقدار حالت فعلی خروجی فیلیپ فلاپ صفر باشه ، مقدار آینده خروجی فیلیپ فلاپ تغییری نمی کنه و صفر باقی می مونه.2- با صفر شدن ورودی RوS در صورتیکه مقدار حالت فعلی خروجی فیلیپ فلاپ یک باشه مقدار آینده خروجی فیلیپ فلاپ تغییری نمی کنه و یک باقی می مونه.3- بند یک و دو بالا ، نان دهنده ی حفظ اطلاعات در فیلیپ فلاپ در دو موقعیت بالاست و این مطلب مؤید ذخیره کنندگی فیلیپ فلاپ هستش.4- هر گاه ورودی RوS مساوی یک منطقی بشه بدون در نظر گرفتن مقدار حالت فعلی (Q(t)) ، خروجی مساوی با  Q(t+1) = Q(t+1) هستش.5-   با توجه به موارد بالا دیاگرام زمانی فیلیپ فلاپ RS رو به شکل زیر رسم می کنیم. در شکل بالا مدار فیلیپ فلاپ RS آسنکرون با گیت پایه ای NAND  رو هم می بینید + جدول صحت اون رو بر اساس حالت فعلی (Q(t)) .که با توجه به جدول صحت و عملکرد فیلیپ فلاپ ، نکات زیر قابل توجه هستش :1-  با 1 شدن ورودی RوS در صورتیکه مقدار حالت فعلی خروجی فیلیپ فلاپ صفر باشه ، مقدار آینده خروجی فیلیپ فلاپ تغییری نمی کنه و صفر باقی می مونه.2-  با 1 شدن ورودی RوS در صورتیکه مقدار حالت فعلی خروجی فیلیپ فلاپ 1 باشه مقدار آینده خروجی فیلیپ فلاپ تغییری نمی کنه و 1 باقی نمی مونه .3-  بند یک و دو بالا نشانگر حفظ اطلاعات در فیلیپ فلاپ در دو موقعیت فوق هستش و این مطلب مؤید ذخیره کنندگی فیلیپ فلاپ هستش.4-  هرگاه ورودی RوS مساوی صفر منطقی بشه بدون در نظر گرفتن مقدار حالت فعلی (Q(t)) ، خروجی آینده مساوی با Q(t+1) = Q(t+1). فیلیپ فلاپ نوع RS سنکرون هم یکی دیگه از انواع فیلیپ فلاپ هاست . در این نوع علاوه بر ورودی های اطلاعات یک ورودی به نام ورودی کلاک یا پالس ساعت وجود داره ، تغییر حالت فیلیپ فلاپ پس از اعمال این پالس و با توجه به نحوه ی تحریک ورودی انجام می شه.در شکل زیر مدار فیلیپ فلاپ سنکرون RS با گیت پایه ای NOR و دیاگرام زمانی  اون نشون داده شده. یک نوع دیگه از فیلیپ فلاپ فیلیپ فلاپ نوع JK هستش که از اون برای رفع معایب فیلیپ نوع RS  استفاده می شه ، این فیلیپ فلاپ یک فیلیپ فلاپ عمومی هستش بطوری که عملا به کمک این فیلیپ فلاپ می تونیم عملکرد فیلیپ فلاپ های دیگه رو تولید کنیم.تو شکل زیر مدار منطقی و جدول صحت فیلیپ فلاپ JK رو می بینید. فیلیپ فلاپ های نوع T یا  Toggale و نوع D  از انواع دیگه ی فیلیپ فلاپ ها هستن.از دیگر اجزایی که در ساخت مدارهای ترتیبی استفاده می شن رجیستر ها هستند . رجیستر مداری هستش که می تونه چند بیت اطلاعات رو در خودش نگه داره ، این مدار از چند عنصر تشکیل می شه که هر عنصر جای ذخیره ی یک بیت اطلاعات هستش . این عناصر به صورت رشته ثابتی به هم متصل هستن .سیگنال های کنترلی در تمام عناصر مشترکه و موجب ورود اطلاعات به همه ی بیت های رجیستر می شه . عنصر ذخیره کننده یک بیت اطلاعات رو ، فیلیپ فلاپ می گن . به این ترتیب برای یک رجیستر n بیتی باید n فیلیپ فلاپ رو در کنار یکدیگه قرار بدیم و سیگنال های ورودی و خروجی اطلاعات به این فیلیپ فلاپ ها بطور مشترک به هم وصل می شن.از جمله سیگنالهای کنترلی برای فیلیپ فلاپ ها clear هستش که همونطور که از اسمش پیداست وظیفش پاک و آماده کردن فیلیپ فلاپ هستش. همچنین سیگنال ساعت برای انتقال اطلاعات ورودی به خروجی فیلیپ فلاپ استفاده می شه . اگه چندین فیلیپ فلاپ در کنار هم قررا بگیرن یک رجیستر ساخته می شه ، در این حالت سیگنال های فوق به یکدیگر وصل و از یک نقطه مشترک فرمان می گیرن . از امکاناتی که اغلب رجیسترها دارند قابلیت انتقال یا جابجایی محتویات اونهاست و رجیستری که این قابلیت رو داره رجیستر انتقالی یا شیفت رجیستر نامیده می شه.انواع رجیسترها هم شامل :-       شیفت رجیستر PIPO یا Parallel Input Parallel Output-       شیفت رجیستر SISO یا Serial Input Serial Output-       شیفت رجیستر PISO یا  Parallel Input Serial Output-       شیفت رجیستر SIPO یا Serial Input Parallel Output شمارنده ها یا کانتر ها  هم از دیگر اجزای ساختاری مدارهای ترتیبی هستند . اصولا شمارنده ها از مدارهای ترتیبی هستند که ورودی نداشته و از خروجی های فیلیپ فلاپ  برای تغذیه شمارنده مورد استفاده قرار میگیره. باید توجه داشت که فقط پالس ساعت از خارج یا از مدارهای داخل به شمارنده اعمال می شه ، بنابراین با اعمال هر پالس ساعت ، شمارنده می شمره.همونطور که می دونید و می شه حدس زد شمارنده ها برای کنترل واحدهای صنعتی و مصارف دیگه مورد استفاده قرار می گیرن ، بعنوان مثال برای اتوماتیک کردن پروسه های صنعتی مثل ستاره به مثلث در موتورها ، کنترل چراغ راهنما در چهار راه ها و جابجایی اتوماتیک سیستم اضطراری و شبکه برق سراسری در یک واحد صنعتی و ... می تونن که مورد استفاده قرار بگیرن.ساخت شمارندهها توسط هر یک از فیلیپ فلاپ های D,JK,T,RS امکان پذیره ، برای این منظور با توجه به تعداد بیت های قابل شمارش و روند شمارش و همچنین جداول حالت فیلیپ فلاپ قابل طراحی هستش.با توجه به طولانی شدن این بحث در پست بعدی در رابطه با انواع حافظه ها و همینطور مدارهای ترکیبی بحث خواهیم کرد و بعد از اون هم به برنامه نویسی plc خواهیم رسید.پیروز و سرافراز باشید ، که البته این در گرو دانایی و هوشیاری شماست ، پس امیدوارم که هوشیار
موافقین ۰ مخالفین ۰ ۰۴ آذر ۹۰ ، ۰۳:۵۶
Shahram Ghasemi
کروماتوگرافی راهی است برای تشخیص اجزا در ابعاد نانومتری، با دقتی در حد و اندازة مولکولی و مدتها پیش از شکلگیری فناوری نانو، برای شناسایی مواد به کار میرفت. اگر چند مولکول با هم داشته باشیم، کروماتوگرافی تشخیص میدهد غلظت آنها چقدر است. اساس کار کروماتوگرافی جداسازی اجزای مخلوط با استفاده از سرعت متفاوت حرکت مولکولهای مختلف در محیط یکسان و با انرژی اولیة مشابه است. دستگاههای کروماتوگرافی پیشرفته، میلیونها مولکول مختلف را در یک میلیمتر مخلوط بهراحتی شناسایی میکنند و پژوهشگران فناوری نانو میتوانند به کمک این روشها قسمت عمدهای از مشکلات خود را در شناسایی مواد مورد استفاده رفع کنند. کروماتوگرافی به عنوان یکی از روشهای آزمایشیِ کارآمد در نانو فناوری، شامل چند روش است: کروماتوگرافی کاغذی، کروماتوگرافی ژلی و کروماتوگرافی گازی از جمله روشهایی هستند که در اینجا با آنها آشنا میشویم. دقت کنید که زمان، عامل کنترل ما بر انتخاب ذراتی است که با سرعتهای مختلف در محیط کروماتوگرافی توزیع مکانی مییابند. ریشة لغویِ کروماتوگرافی در زبان یونانی chroma به معنی رنگ و grophein به معنی نوشتن است. اطلاعات اولیه کروماتوگرافی پُرکاربردترین شیوة جداسازی تجزیهای است که در تمام شاخههای علوم به کار میرود. کروماتوگرافی گروه گوناگون و مهمی از روشهای جداسازی را شامل میشود و امکان میدهد تا اجزای سازندة نزدیک به همِ مخلوطهای کمپلکس را جدا، منزوی و شناسایی کند. بسیاری از این جداسازیها به روشهای دیگر ناممکن است. سیر تحولی رشد اولین روشهای کروماتوگرافی در سال 1903 توسط میخائیل سوئت ابداع و نامگذاری شد. او از این روش برای جداسازی مواد رنگی استفاده کرد.ریچارد لارنس و جان آرچر در سال 1952 به پاس اکتشافاتشان در زمینة کروماتوگرافی جایزة نوبل گرفتند. توصیف کروماتوگرافی کروماتوگرافی را به علت اینکه دربرگیرندة سیستمها و تکنیکهای مختلفی است نمیتوان به طور مشخص تعریف کرد. اغلب جداسازیها بر مبنای کروماتوگرافی و بر روی مخلوطهایی از مواد بیرنگ از جمله گازها صورت میگیرد. کروماتوگرافی متکی بر حرکت نسبی دو فاز است. یکی از این فازها بدون حرکت است و فاز ساکن نامیده میشود و دیگری را فاز متحرک مینامند. اجزای یک مخلوط به وسیلة جریانی از یک فاز متحرک از داخل فاز ساکن عبور داده میشوند و جداسازی بر اختلاف در سرعت مهاجرت اجزای مختلف نمونه استواراست. مثال اگر به طور ساده بخواهیم عمل کروماتوگرافی را انجام دهیم، یک لیوان حاوی آب را برمیداریم و یک قطره جوهر در آن میچکانیم. سپس تکهکاغذی را برمیداریم و قسمتی از آن را در لیوان آب قرار میدهیم. پس از مدتی مشاهده میشود که جوهر از کاغذ بالا میرود و پخش میشود. برای مشاهده شبیه سازی کروماتوگرافی کلیک کنید روشهای کروماتوگرافی روشهای کروماتوگرافی، بر حسب ماهیت فاز متحرک و سپس بر حسب ماهیت فاز ساکن، ممکن است جامد، مایع و گاز باشند. بدین ترتیب، فرآیند کروماتوگرافی به چهار بخش اصلی تقسیم میشود. باید گفت که اگر فاز ساکن، مایع باشد کروماتوگرافی را تقسیمی مینامند. انواع کروماتوگرافی هر یک از 4 نوع اصلی کروماتوگرافی انواع مختلفی دارد: کروماتوگرافی مایع ـ جامد • کروماتوگرافی جذب سطحی • کروماتوگرافی لایة نازک • کروماتوگرافی تبادل یونی • کروماتوگرافی ژلی کروماتوگرافی گاز ـ جامد کروماتوگرافی مایع ـ مایع • کروماتوگرافی تقسیمی • کروماتوگرافی کاغذی کروماتوگرافی گاز ـ مایع • کروماتوگرافی گاز ـ مایع • کروماتوگرافی ستون موئین مزیت روشهای کروماتوگرافی روشهای کروماتوگرافی میتوانند جداسازیهایی را که به روشهای دیگر خیلی مشکلاند، به انجام برسانند. زیرا اختلاف جزئی موجود در رفتار جزئی اجسام، در جریان عبور آنها از یک سیستمِ کروماتوگرافی چند برابر میشود. هر چه این اختلاف بیشتر شود، قدرت جداسازی بیشتر و برای انجام جداسازی نیاز کمتری به وجود اختلافات دیگر خواهد بود. • مزیت کروماتوگرافی نسبت به ستون تقطیر این است که بهآسانی میتوان به آن دست یافت. با وجود اینکه ممکن است چندین روز طول بکشد تا یک ستون تقطیر به حداکثر بازده خود برسد، ولی یک جداسازی کروماتوگرافی میتواند در عرض چند دقیقه یا چند ساعت انجام گیرد. • یکی از مزایای برجستة روشهای کروماتوگرافی این است که آنها آرام هستند. به این معنی که احتمال تجزیة مواد جداشونده به وسیلة این روشها در مقایسه با سایر روشها کمتر است. • مزیت دیگر روشهای کروماتوگرافی این است که تنها مقدار بسیار کمی از مخلوط برای تجزیه لازم است. به این علت، روشهای تجزیهای مربوط به جداسازی کروماتوگرافی میتوانند در مقیاس میکرو و نیمه میکرو انجام گیرند. • روشهای کروماتوگرافی ساده، سریع و وسایل مورد لزوم آنها ارزان هستند. اجزای مخلوطهای پیچیده را به کمک این روشها میتوان از یکدیگر جدا کرد. مواد انواع کروماتوگرافی مواد شیمیایی مشابه کروماتوگرافی تقسیمی مواد شیمیایی غیر مشابه کروماتوگرافی جذب سطحی گازها و اجسام فرّار کروماتوگرافی گازی مواد یونی و معدنی کروماتوگرافی تبادل یونی در ستون کروماتوگرافی کاغذی یا لایه نازک مواد یونی و غیر یونی الکتروفوز ناحیهای مواد زیستی و ترکیباتی با جرم مولکولی نسبی بالا کروماتوگرافی تبادل یون یا ژلی انتخاب بهترین روش کروماتوگرافی انتخاب نوع روش کروماتوگرافی بجز در موارد واضح (مانند کروماتوگرافی گازی در جداسازی گازها) عموماً تجربی است. زیرا هنوز هیچ راهی برای پیشبینی بهترین روش برای جداسازی اجسام، مگر در چند مورد ساده وجود ندارد. در ابتدا روشهای سادهتری مانند کروماتوگرافی کاغذی و لایه نازک امتحان میشوند. در صورتی که با این روشها مستقیماً قادر به جداسازی باشند، جداسازی را باید به وسیلة آنها صورت داد. در غیر این صورت، از روشهای پیچیدهتر استفاده میشود. کروماتوگرافی مایع با کارایی بالا (HELC)، وقتی که روشهای ساده فاقد کارایی لازم هستند، میتواند جوابگو باشد.
موافقین ۰ مخالفین ۰ ۳۰ آبان ۹۰ ، ۰۸:۱۰
Shahram Ghasemi