Our exploration of thyristors begins with a device called the four-layer diode, also known as a PNPN diode, or a Shockley diode after its inventor, William Shockley. This is not to be confused with a Schottky diode,
that two-layer metal-semiconductor device known for its high switching
speed. A crude illustration of the Shockley diode, often seen in
textbooks, is a four-layer sandwich of P-N-P-N semiconductor material,
Figure below.
Shockley or 4-layer diode
Unfortunately, this simple illustration does nothing to enlighten the
viewer on how it works or why. Consider an alternative rendering of the
device’s construction in Figure below.
Transistor equivalent of Shockley diode
Shown like this, it appears to be a set of interconnected bipolar
transistors, one PNP and the other NPN. Drawn using standard schematic
symbols, and respecting the layer doping concentrations not shown in the
last image, the Shockley diode looks like this (Figure below)
Shockley diode: physical diagram, equivalent schematic diagram, and schematic symbol.
Let’s connect one of these devices to a source of variable voltage and see what happens: (Figure below)
Powered Shockley diode equivalent circuit.
With no voltage applied, of course there will be no current. As
voltage is initially increased, there will still be no current because
neither transistor is able to turn on: both will be in cutoff mode. To
understand why this is, consider what it takes to turn a bipolar
junction transistor on: current through the base-emitter junction. As
you can see in the diagram, base current through the lower transistor is
controlled by the upper transistor, and the base current through the
upper transistor is controlled by the lower transistor. In other words,
neither transistor can turn on until the other transistor turns on. What we have here, in vernacular terms, is known as a Catch-22.
So how can a Shockley diode ever conduct current, if its constituent
transistors stubbornly maintain themselves in a state of cutoff? The
answer lies in the behavior of real transistors as opposed to ideal
transistors. An ideal bipolar transistor will never conduct collector
current if no base current flows, no matter how much or little voltage
we apply between collector and emitter. Real transistors, on the other
hand, have definite limits to how much collector-emitter voltage each
can withstand before one breaks down and conduct. If two real
transistors are connected in this fashion to form a Shockley diode, each
one will conduct if sufficient voltage is applied by the battery
between anode and cathode to cause one of them to break down. Once one
transistor breaks down and begins to conduct, it will allow base current
through the other transistor, causing it to turn on in a normal
fashion, which then allows base current through the first transistor.
The end result is that both transistors will be saturated, now keeping
each other turned on instead of off.
So, we can force a Shockley diode to turn on by applying sufficient
voltage between anode and cathode. As we have seen, this will inevitably
cause one of the transistors to turn on, which then turns the other
transistor on, ultimately “latching” both transistors on where each will
tend to remain. But how do we now get the two transistors to turn off
again? Even if the applied voltage is reduced to a point well below what
it took to get the Shockley diode conducting, it will remain conducting
because both transistors now have base current to maintain regular,
controlled conduction. The answer to this is to reduce the applied
voltage to a much lower point where too little current flows to maintain
transistor bias, at which point one of the transistors will cutoff,
which then halts base current through the other transistor, sealing both
transistors in the “off” state as each one was before any voltage was
applied at all.
If we graph this sequence of events and plot the results on an I/V
graph, the hysteresis is evident. First, we will observe the circuit as
the DC voltage source (battery) is set to zero voltage: (Figure below)
Zero applied voltage; zero current
Next, we will steadily increase the DC voltage. Current through the
circuit is at or nearly at zero, as the breakdown limit has not been
reached for either transistor: (Figure below)
Some applied voltage; still no current
When the voltage breakdown limit of one transistor is reached, it
will begin to conduct collector current even though no base current has
gone through it yet. Normally, this sort of treatment would destroy a
bipolar junction transistor, but the PNP junctions comprising a Shockley
diode are engineered to take this kind of abuse, similar to the way a
Zener diode is built to handle reverse breakdown without sustaining
damage. For the sake of illustration I’ll assume the lower transistor
breaks down first, sending current through the base of the upper
transistor: (Figure below)
More voltage applied; lower transistor breaks down
As the upper transistor receives base current, it turns on as
expected. This action allows the lower transistor to conduct normally,
the two transistors “sealing” themselves in the “on” state. Full current
is quickly seen in the circuit: (Figure below)
Transistors are now fully conducting.
The positive feedback mentioned earlier in this chapter is clearly
evident here. When one transistor breaks down, it allows current through
the device structure. This current may be viewed as the “output” signal
of the device. Once an output current is established, it works to hold
both transistors in saturation, thus ensuring the continuation of a
substantial output current. In other words, an output current “feeds
back” positively to the input (transistor base current) to keep both
transistors in the “on” state, thus reinforcing (or regenerating) itself.
With both transistors maintained in a state of saturation with the
presence of ample base current, each will continue to conduct even if
the applied voltage is greatly reduced from the breakdown level. The
effect of positive feedback is to keep both transistors in a state of
saturation despite the loss of input stimulus (the original, high
voltage needed to break down one transistor and cause a base current
through the other transistor): (Figure below)
Current maintained even when voltage is reduced
If the DC voltage source is turned down too far, though, the circuit
will eventually reach a point where there isn’t enough current to
sustain both transistors in saturation. As one transistor passes less
and less collector current, it reduces the base current for the other
transistor, thus reducing base current for the first transistor. The
vicious cycle continues rapidly until both transistors fall into cutoff:
(Figure below)
If voltage drops too low, both transistors shut off.
Here, positive feedback is again at work: the fact that the
cause/effect cycle between both transistors is “vicious” (a decrease in
current through one works to decrease current through the other, further
decreasing current through the first transistor) indicates a positive
relationship between output (controlled current) and input (controlling
current through the transistors’ bases).
The resulting curve on the graph is classically hysteretic: as the
input signal (voltage) is increased and decreased, the output (current)
does not follow the same path going down as it did going up: (Figure
below)
Hysteretic curve
Put in simple terms, the Shockley diode tends to stay on once its
turned on, and stay off once its turned off. No “in-between” or “active”
mode in its operation: it is a purely on or off device, as are all
thyristors.
A few special terms apply to Shockley diodes and all other thyristor
devices built upon the Shockley diode foundation. First is the term used
to describe its “on” state: latched. The word “latch” is
reminiscent of a door lock mechanism, which tends to keep the door
closed once it has been pushed shut. The term firing refers to the initiation of a latched state. To get a Shockley diode to latch, the applied voltage must be increased until breakover is attained. Though this action is best described as transistor breakdown, the term breakover
is used instead because the result is a pair of transistors in mutual
saturation rather than destruction of the transistor. A latched Shockley
diode is re-set back into its nonconducting state by reducing current
through it until low-current dropout occurs.
Note that Shockley diodes may be fired in a way other than breakover: excessive voltage rise, or dv/dt.
If the applied voltage across the diode increases at a high rate of
change, it may trigger. This is able to cause latching (turning on) of
the diode due to inherent junction capacitances within the transistors.
Capacitors, as you may recall, oppose changes in voltage by
drawing or supplying current. If the applied voltage across a Shockley
diode rises at too fast a rate, those tiny capacitances will draw enough
current during that time to activate the transistor pair, turning them
both on. Usually, this form of latching is undesirable, and can be
minimized by filtering high-frequency (fast voltage rises) from the
diode with series inductors and parallel resistor-capacitor networks
called snubbers: (Figure below)
Both the series inductor and parallel resistor-capacitor
“snubber” circuit help minimize the Shockley diode’s exposure to
excessively rising voltage.
The voltage rise limit of a Shockley diode is referred to as the critical rate of voltage rise. Manufacturers usually provide this specification for the devices they sell.
REVIEW:Shockley diodes are four-layer PNPN semiconductor devices. These behave as a pair of interconnected PNP and NPN transistors.Like all thyristors, Shockley diodes tend to stay on once turned on (latched), and stay off once turned off.To latch a Shockley diode exceed the anode-to-cathode breakover voltage, or exceed the anode-to-cathode critical rate of voltage rise.To cause a Shockley diode to stop conducting, reduce the current going through it to a level below its low-current dropout threshold.
Les