مهندسی پزشکی

مقالات مهندسی پزشکی

مهندسی پزشکی

مقالات مهندسی پزشکی

While the C-B (common-base) amplifier is known for wider bandwidth than the C-E (common-emitter) configuration, the low input impedance (10s of ?) of C-B is a limitation for many applications. The solution is to precede the C-B stage by a low gain C-E stage which has moderately high input impedance (k?s). See Figure below. The stages are in a cascode configuration, stacked in series, as opposed to cascaded for a standard amplifier chain. See “Capacitor coupled three stage common-emitter amplifier” Capacitor coupled for a cascade example. The cascode amplifier configuration has both wide bandwidth and a moderately high input impedance. The cascode amplifier is combined common-emitter and common-base. This is an AC circuit equivalent with batteries and capacitors replaced by short circuits. The key to understanding the wide bandwidth of the cascode configuration is the Miller effect. The Miller effect is the multiplication of the bandwidth robbing collector-base capacitance by voltage gain Av. This C-B capacitance is smaller than the E-B capacitance. Thus, one would think that the C-B capacitance would have little effect. However, in the C-E configuration, the collector output signal is out of phase with the input at the base. The collector signal capacitively coupled back opposes the base signal. Moreover, the collector feedback is (1-Av) times larger than the base signal. Thus, the small C-B capacitance appears (1-Av) times larger than its actual value. This capacitive gain reducing feedback increases with frequency, reducing the high frequency response of a C-E amplifier. The approximage voltage gain of the C-E amplifier in Figure belowb is -RL/REE. The emitter current is set to 1.0 mA by biasing. REE= 26mV/IE = 26mV/1.0ma = 26 ?. Thus, Av = -RL/REE = -4700/26 = -181. The pn2222 datasheet list Ccbo = 8 pF.[FAR] The miller capacitance is Ccbo(1-Av). Gain Av = -181, negative since it is inverting gain. Cmiller = Ccbo(1-Av) = 8pF(1-(-181)=1456pF A common-base configuration is not subject to the Miller effect because the grounded base shields the collector signal from being fed back to the emitter input. Thus, a C-B amplifier has better high frequency response. To have a moderately high input impedance, the C-E stage is still desirable. The key is to reduce the gain (to about 1) of the C-E stage which reduces the Miller effect C-B feedback to 1·CCBO. The total C-B feedback is the feedback capacitance 1·CCB plus the actual capacitance CCB for a total of 2·CCBO. This is a considerable reduction from 181·CCBO. The miller capacitance for a gain of -2 C-E stage is Cmiller = Ccbo(1-Av)= Cmiller = Ccbo(1-(-1)) = Ccbo·2. The way to reduce the common-emitter gain is to reduce the load resistance. The gain of a C-E amplifier is approximately RC/RE. The internal emitter resistance REE at 1mA emitter current is 26?. For details on the 26?, see “Derivation of REE”, see REE. The collector load RC is the resistance of the emitter of the C-B stage loading the C-E stage, 26? again. CE gain amplifier gain is approximately Av = RC/RE=26/26=1. This Miller capacitance is Cmiller = Ccbo(1-Av) = 8pF(1-(-1)=16pF. We now have a moderately high input impedance C-E stage without suffering the Miller effect, but no C-E dB voltage gain. The C-B stage provides a high voltage gain, AV = -181. Current gain of cascode is ? of the C-E stage, 1 for the C-B, ? overall. Thus, the cascode has moderately high input impedance of the C-E, good gain, and good bandwidth of the C-B. SPICE: Cascode and common-emitter for comparison. The SPICE version of both a cascode amplifier, and for comparison, a common-emitter amplifier is shown in Figure above. The netlist is in Table below. The AC source V3 drives both amplifiers via node 4. The bias resistors for this circuit are calculated in an example problem cascode. SPICE waveforms. Note that Input is multiplied by 10 for visibility. *SPICE circuit from XCircuit v3.20 V1 19 0 10 Q1 13 15 0 q2n2222 Q2 3 2 A q2n2222 R1 19 13 4.7k V2 16 0 1.5 C1 4 15 10n R2 15 16 80k Q3 A 5 0 q2n2222 V3 4 6 SIN(0 0.1 1k) ac 1 R3 1 2 80k R4 3 9 4.7k C2 2 0 10n C3 4 5 10n R5 5 6 80k V4 1 0 11.5 V5 9 0 20 V6 6 0 1.5 .model q2n2222 npn (is=19f bf=150 + vaf=100 ikf=0.18 ise=50p ne=2.5 br=7.5 + var=6.4 ikr=12m isc=8.7p nc=1.2 rb=50 + re=0.4 rc=0.3 cje=26p tf=0.5n + cjc=11p tr=7n xtb=1.5 kf=0.032f af=1) .tran 1u 5m .AC DEC 10 1k 100Meg .end The waveforms in Figure above show the operation of the cascode stage. The input signal is displayed multiplied by 10 so that it may be shown with the outputs. Note that both the Cascode, Common-emitter, and Va (intermediate point) outputs are inverted from the input. Both the Cascode and Common emitter have large amplitude outputs. The Va point has a DC level of about 10V, about half way between 20V and ground. The signal is larger than can be accounted for by a C-E gain of 1, It is three times larger than expected. Cascode vs common-emitter banwidth. Figure above shows the frequency response to both the cascode and common-emitter amplifiers. The SPICE statements responsible for the AC analysis, extracted from the listing: V3 4 6 SIN(0 0.1 1k) ac 1 .AC DEC 10 1k 100Meg Note the “ac 1” is necessary at the end of the V3 statement. The cascode has marginally better mid-band gain. However, we are primarily looking for the bandwidth measured at the -3dB points, down from the midband gain for each amplifier. This is shown by the vertical solid lines in Figure above. It is also possible to print the data of interest from nutmeg to the screen, the SPICE graphical viewer (command, first line): nutmeg 6 -> print frequency db(vm(3)) db(vm(13)) Index frequency db(vm(3)) db(vm(13)) 22 0.158MHz 47.54 45.41 33 1.995MHz 46.95 42.06 37 5.012MHz 44.63 36.17 Index 22 gives the midband dB gain for Cascode vm(3)=47.5dB and Common-emitter vm(13)=45.4dB. Out of many printed lines, Index 33 was the closest to being 3dB down from 45.4dB at 42.0dB for the Common-emitter circuit. The corresponding Index 33 frequency is approximately 2Mhz, the common-emitter bandwidth. Index 37 vm(3)=44.6db is approximately 3db down from 47.5db. The corresponding Index37 frequency is 5Mhz, the cascode bandwidth. Thus, the cascode amplifier has a wider bandwidth. We are not concerned with the low frequency degradation of gain. It is due to the capacitors, which could be remedied with larger ones. The 5MHz bandwith of our cascode example, while better than the common-emitter example, is not exemplary for an RF (radio frequency) amplifier. A pair of RF or microwave transistors with lower interelectrode capacitances should be used for higher bandwidth. Before the invention of the RF dual gate MOSFET, the BJT cascode amplifier could have been found in UHF (ultra high frequency) TV tuners. REVIEWA cascode amplifier consists of a common-emitter stage loaded by the emitter of a common-base stage.The heavily loaded C-E stage has a low gain of 1, overcoming the Miller effectA cascode amplifier has a high gain, moderately high input impedance, a high output impedance, and a high bandwidth. Lessons In Electric Circuits copyright (C) 2000-2010 Tony R. Kuphaldt
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۱۳
Shahram Ghasemi
Our next transistor configuration to study is a bit simpler for gain calculations. Called the common-collector configuration, its schematic diagram is shown in Figure below. Common collector amplifier has collector common to both input and output. It is called the common-collector configuration because (ignoring the power supply battery) both the signal source and the load share the collector lead as a common connection point as in Figure below. Common collector: Input is applied to base and collector. Output is from emitter-collector circuit. It should be apparent that the load resistor in the common-collector amplifier circuit receives both the base and collector currents, being placed in series with the emitter. Since the emitter lead of a transistor is the one handling the most current (the sum of base and collector currents, since base and collector currents always mesh together to form the emitter current), it would be reasonable to presume that this amplifier will have a very large current gain. This presumption is indeed correct: the current gain for a common-collector amplifier is quite large, larger than any other transistor amplifier configuration. However, this is not necessarily what sets it apart from other amplifier designs. Let’s proceed immediately to a SPICE analysis of this amplifier circuit, and you will be able to immediately see what is unique about this amplifier. The circuit is in Figure below. The netlist is in Figure below. Common collector: Output equals input less a 0.7 V VBE drop. Unlike the common-emitter amplifier from the previous section, the common-collector produces an output voltage in direct rather than inverse proportion to the rising input voltage. See Figure above. As the input voltage increases, so does the output voltage. Moreover, a close examination reveals that the output voltage is nearly identical to the input voltage, lagging behind by about 0.7 volts. This is the unique quality of the common-collector amplifier: an output voltage that is nearly equal to the input voltage. Examined from the perspective of output voltage change for a given amount of input voltage change, this amplifier has a voltage gain of almost exactly unity (1), or 0 dB. This holds true for transistors of any ? value, and for load resistors of any resistance value. It is simple to understand why the output voltage of a common-collector amplifier is always nearly equal to the input voltage. Referring to the diode current source transistor model in Figure below, we see that the base current must go through the base-emitter PN junction, which is equivalent to a normal rectifying diode. If this junction is forward-biased (the transistor conducting current in either its active or saturated modes), it will have a voltage drop of approximately 0.7 volts, assuming silicon construction. This 0.7 volt drop is largely irrespective of the actual magnitude of base current; thus, we can regard it as being constant: Emitter follower: Emitter voltage follows base voltage (less a 0.7 V VBE drop.) Given the voltage polarities across the base-emitter PN junction and the load resistor, we see that these must add together to equal the input voltage, in accordance with Kirchhoff’s Voltage Law. In other words, the load voltage will always be about 0.7 volts less than the input voltage for all conditions where the transistor is conducting. Cutoff occurs at input voltages below 0.7 volts, and saturation at input voltages in excess of battery (supply) voltage plus 0.7 volts. Because of this behavior, the common-collector amplifier circuit is also known as the voltage-follower or emitter-follower amplifier, because the emitter load voltages follow the input so closely. Applying the common-collector circuit to the amplification of AC signals requires the same input “biasing” used in the common-emitter circuit: a DC voltage must be added to the AC input signal to keep the transistor in its active mode during the entire cycle. When this is done, the result is the non-inverting amplifier in Figure below. Common collector (emitter-follower) amplifier. The results of the SPICE simulation in Figure below show that the output follows the input. The output is the same peak-to-peak amplitude as the input. Though, the DC level is shifted downward by one VBE diode drop. Common collector (emitter-follower): Output V3 follows input V1 less a 0.7 V VBE drop. Here’s another view of the circuit (Figure below) with oscilloscopes connected to several points of interest. Common collector non-inverting voltage gain is 1. Since this amplifier configuration doesn’t provide any voltage gain (in fact, in practice it actually has a voltage gain of slightly less than 1), its only amplifying factor is current. The common-emitter amplifier configuration examined in the previous section had a current gain equal to the ? of the transistor, being that the input current went through the base and the output (load) current went through the collector, and ? by definition is the ratio between the collector and base currents. In the common-collector configuration, though, the load is situated in series with the emitter, and thus its current is equal to the emitter current. With the emitter carrying collector current and base current, the load in this type of amplifier has all the current of the collector running through it plus the input current of the base. This yields a current gain of ? plus 1: Once again, PNP transistors are just as valid to use in the common-collector configuration as NPN transistors. The gain calculations are all thesame, as is the non-inverting of the amplified signal. The only difference is in voltage polarities and current directions shown in Figure below. PNP version of the common-collector amplifier. A popular application of the common-collector amplifier is for regulated DC power supplies, where an unregulated (varying) source of DC voltage is clipped at a specified level to supply regulated (steady) voltage to a load. Of course, zener diodes already provide this function of voltage regulation shown in Figure below. Zener diode voltage regulator. However, when used in this direct fashion, the amount of current that may be supplied to the load is usually quite limited. In essence, this circuit regulates voltage across the load by keeping current through the series resistor at a high enough level to drop all the excess power source voltage across it, the zener diode drawing more or less current as necessary to keep the voltage across itself steady. For high-current loads, a plain zener diode voltage regulator would have to shunt a heavy current through the diode to be effective at regulating load voltage in the event of large load resistance or voltage source changes. One popular way to increase the current-handling ability of a regulator circuit like this is to use a common-collector transistor to amplify current to the load, so that the zener diode circuit only has to handle the amount of current necessary to drive the base of the transistor. (Figure below) Common collector application: voltage regulator. There’s really only one caveat to this approach: the load voltage will be approximately 0.7 volts less than the zener diode voltage, due to the transistor’s 0.7 volt base-emitter drop. Since this 0.7 volt difference is fairly constant over a wide range of load currents, a zener diode with a 0.7 volt higher rating can be chosen for the application. Sometimes the high current gain of a single-transistor, common-collector configuration isn’t enough for a particular application. If this is the case, multiple transistors may be staged together in a popular configuration known as a Darlington pair, just an extension of the common-collector concept shown in Figure below. An NPN darlington pair. Darlington pairs essentially place one transistor as the common-collector load for another transistor, thus multiplying their individual current gains. Base current through the upper-left transistor is amplified through that transistor’s emitter, which is directly connected to the base of the lower-right transistor, where the current is again amplified. The overall current gain is as follows: Voltage gain is still nearly equal to 1 if the entire assembly is connected to a load in common-collector fashion, although the load voltage will be a full 1.4 volts less than the input voltage shown in Figure below. Darlington pair based common-collector amplifier loses two VBE diode drops. Darlington pairs may be purchased as discrete units (two transistors in the same package), or may be built up from a pair of individual transistors. Of course, if even more current gain is desired than what may be obtained with a pair, Darlington triplet or quadruplet assemblies may be constructed. REVIEW:Common-collector transistor amplifiers are so-called because the input and output voltage points share the collector lead of the transistor in common with each other, not considering any power supplies.The common-collector amplifier is also known as an emitter-follower.The output voltage on a common-collector amplifier will be in phase with the input voltage, making the common-collector a non-inverting amplifier circuit.The current gain of a common-collector amplifier is equal to ? plus 1. The voltage gain is approximately equal to 1 (in practice, just a little bit less).A Darlington pair is a pair of transistors “piggybacked” on one another so that the emitter of one feeds current to the base of the other in common-collector form. The result is an overall current gain equal to the product (multiplication) of their individual common-collector current gains (? plus 1). Lessons In Electric Circuits copyright (C) 2000-2010 Tony R. Kuphaldt
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۱۳
Shahram Ghasemi
Bipolar transistors are constructed of a three-layer semiconductor “sandwich,” either PNP or NPN. As such, transistors register as two diodes connected back-to-back when tested with a multimeter’s “resistance” or “diode check” function as illustrated in Figure below. Low resistance readings on the base with the black negative (-) leads correspond to an N-type base in a PNP transistor. On the symbol, the N-type material corresponds to the “non-pointing” end of the base-emitter junction, the base. The P-type emitter corresponds to “pointing” end of the base-emitter junction the emitter. PNP transistor meter check: (a) forward B-E, B-C, resistance is low; (b) reverse B-E, B-C, resistance is ?. Here I’m assuming the use of a multimeter with only a single continuity range (resistance) function to check the PN junctions. Some multimeters are equipped with two separate continuity check functions: resistance and “diode check,” each with its own purpose. If your meter has a designated “diode check” function, use that rather than the “resistance” range, and the meter will display the actual forward voltage of the PN junction and not just whether or not it conducts current. Meter readings will be exactly opposite, of course, for an NPN transistor, with both PN junctions facing the other way. Low resistance readings with the red (+) lead on the base is the “opposite” condition for the NPN transistor. If a multimeter with a “diode check” function is used in this test, it will be found that the emitter-base junction possesses a slightly greater forward voltage drop than the collector-base junction. This forward voltage difference is due to the disparity in doping concentration between the emitter and collector regions of the transistor: the emitter is a much more heavily doped piece of semiconductor material than the collector, causing its junction with the base to produce a higher forward voltage drop. Knowing this, it becomes possible to determine which wire is which on an unmarked transistor. This is important because transistor packaging, unfortunately, is not standardized. All bipolar transistors have three wires, of course, but the positions of the three wires on the actual physical package are not arranged in any universal, standardized order. Suppose a technician finds a bipolar transistor and proceeds to measure continuity with a multimeter set in the “diode check” mode. Measuring between pairs of wires and recording the values displayed by the meter, the technician obtains the data in Figure below. Unknown bipolar transistor. Which terminals are emitter, base, and collector? ?-meter readings between terminals. The only combinations of test points giving conducting meter readings are wires 1 and 3 (red test lead on 1 and black test lead on 3), and wires 2 and 3 (red test lead on 2 and black test lead on 3). These two readings must indicate forward biasing of the emitter-to-base junction (0.655 volts) and the collector-to-base junction (0.621 volts). Now we look for the one wire common to both sets of conductive readings. It must be the base connection of the transistor, because the base is the only layer of the three-layer device common to both sets of PN junctions (emitter-base and collector-base). In this example, that wire is number 3, being common to both the 1-3 and the 2-3 test point combinations. In both those sets of meter readings, the black (-) meter test lead was touching wire 3, which tells us that the base of this transistor is made of N-type semiconductor material (black = negative). Thus, the transistor is a PNP with base on wire 3, emitter on wire 1 and collector on wire 2 as described in Figure below. BJT terminals identified by ?-meter. Please note that the base wire in this example is not the middle lead of the transistor, as one might expect from the three-layer “sandwich” model of a bipolar transistor. This is quite often the case, and tends to confuse new students of electronics. The only way to be sure which lead is which is by a meter check, or by referencing the manufacturer’s “data sheet” documentation on that particular part number of transistor. Knowing that a bipolar transistor behaves as two back-to-back diodes when tested with a conductivity meter is helpful for identifying an unknown transistor purely by meter readings. It is also helpful for a quick functional check of the transistor. If the technician were to measure continuity in any more than two or any less than two of the six test lead combinations, he or she would immediately know that the transistor was defective (or else that it wasn’t a bipolar transistor but rather something else — a distinct possibility if no part numbers can be referenced for sure identification!). However, the “two diode” model of the transistor fails to explain how or why it acts as an amplifying device. To better illustrate this paradox, let’s examine one of the transistor switch circuits using the physical diagram in Figure below rather than the schematic symbol to represent the transistor. This way the two PN junctions will be easier to see. A small base current flowing in the forward biased base-emitter junction allows a large current flow through the reverse biased base-collector junction. A grey-colored diagonal arrow shows the direction of electron flow through the emitter-base junction. This part makes sense, since the electrons are flowing from the N-type emitter to the P-type base: the junction is obviously forward-biased. However, the base-collector junction is another matter entirely. Notice how the grey-colored thick arrow is pointing in the direction of electron flow (up-wards) from base to collector. With the base made of P-type material and the collector of N-type material, this direction of electron flow is clearly backwards to the direction normally associated with a PN junction! A normal PN junction wouldn’t permit this “backward” direction of flow, at least not without offering significant opposition. However, a saturated transistor shows very little opposition to electrons, all the way from emitter to collector, as evidenced by the lamp’s illumination! Clearly then, something is going on here that defies the simple “two-diode” explanatory model of the bipolar transistor. When I was first learning about transistor operation, I tried to construct my own transistor from two back-to-back diodes, as in Figure below. A pair of back-to-back diodes don’t act like a transistor! My circuit didn’t work, and I was mystified. However useful the “two diode” description of a transistor might be for testing purposes, it doesn’t explain how a transistor behaves as a controlled switch. What happens in a transistor is this: the reverse bias of the base-collector junction prevents collector current when the transistor is in cutoff mode (that is, when there is no base current). If the base-emitter junction is forward biased by the controlling signal, the normally-blocking action of the base-collector junction is overridden and current is permitted through the collector, despite the fact that electrons are going the “wrong way” through that PN junction. This action is dependent on the quantum physics of semiconductor junctions, and can only take place when the two junctions are properly spaced and the doping concentrations of the three layers are properly proportioned. Two diodes wired in series fail to meet these criteria; the top diode can never “turn on” when it is reversed biased, no matter how much current goes through the bottom diode in the base wire loop. See Bipolar junction transistors, Ch 2 for more details. That doping concentrations play a crucial part in the special abilities of the transistor is further evidenced by the fact that collector and emitter are not interchangeable. If the transistor is merely viewed as two back-to-back PN junctions, or merely as a plain N-P-N or P-N-P sandwich of materials, it may seem as though either end of the transistor could serve as collector or emitter. This, however, is not true. If connected “backwards” in a circuit, a base-collector current will fail to control current between collector and emitter. Despite the fact that both the emitter and collector layers of a bipolar transistor are of the same doping type (either N or P), collector and emitter are definitely not identical! Current through the emitter-base junction allows current through the reverse-biased base-collector junction. The action of base current can be thought of as “opening a gate” for current through the collector. More specifically, any given amount of emitter-to-base current permits a limited amount of base-to-collector current. For every electron that passes through the emitter-base junction and on through the base wire, a certain, number of electrons pass through the base-collector junction and no more. In the next section, this current-limiting of the transistor will be investigated in more detail. REVIEW:Tested with a multimeter in the “resistance” or “diode check” modes, a transistor behaves like two back-to-back PN (diode) junctions.The emitter-base PN junction has a slightly greater forward voltage drop than the collector-base PN junction, because of heavier doping of the emitter semiconductor layer.The reverse-biased base-collector junction normally blocks any current from going through the transistor between emitter and collector. However, that junction begins to conduct if current is drawn through the base wire. Base current may be thought of as “opening a gate” for a certain, limited amount of current through the collector. Lessons In Electric Circuits copyright (C) 2000-2010 Tony R. Kuphaldt
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۱۳
Shahram Ghasemi
The invention of the bipolar transistor in 1948 ushered in a revolution in electronics. Technical feats previously requiring relatively large, mechanically fragile, power-hungry vacuum tubes were suddenly achievable with tiny, mechanically rugged, power-thrifty specks of crystalline silicon. This revolution made possible the design and manufacture of lightweight, inexpensive electronic devices that we now take for granted. Understanding how transistors function is of paramount importance to anyone interested in understanding modern electronics. My intent here is to focus as exclusively as possible on the practical function and application of bipolar transistors, rather than to explore the quantum world of semiconductor theory. Discussions of holes and electrons are better left to another chapter in my opinion. Here I want to explore how to use these components, not analyze their intimate internal details. I don’t mean to downplay the importance of understanding semiconductor physics, but sometimes an intense focus on solid-state physics detracts from understanding these devices’ functions on a component level. In taking this approach, however, I assume that the reader possesses a certain minimum knowledge of semiconductors: the difference between “P” and “N” doped semiconductors, the functional characteristics of a PN (diode) junction, and the meanings of the terms “reverse biased” and “forward biased.” If these concepts are unclear to you, it is best to refer to earlier chapters in this book before proceeding with this one. A bipolar transistor consists of a three-layer “sandwich” of doped (extrinsic) semiconductor materials, either P-N-P in Figure below(b) or N-P-N at (d). Each layer forming the transistor has a specific name, and each layer is provided with a wire contact for connection to a circuit. The schematic symbols are shown in Figure below(a) and (d). BJT transistor: (a) PNP schematic symbol, (b) physical layout (c) NPN symbol, (d) layout. The functional difference between a PNP transistor and an NPN transistor is the proper biasing (polarity) of the junctions when operating. For any given state of operation, the current directions and voltage polarities for each kind of transistor are exactly opposite each other. Bipolar transistors work as current-controlled current regulators. In other words, transistors restrict the amount of current passed according to a smaller, controlling current. The main current that is controlled goes from collector to emitter, or from emitter to collector, depending on the type of transistor it is (PNP or NPN, respectively). The small current that controls the main current goes from base to emitter, or from emitter to base, once again depending on the kind of transistor it is (PNP or NPN, respectively). According to the standards of semiconductor symbology, the arrow always points against the direction of electron flow. (Figure below) Small electron base current controls large collector electron current flowing against emitter arrow. Bipolar transistors are called bipolar because the main flow of electrons through them takes place in two types of semiconductor material: P and N, as the main current goes from emitter to collector (or vice versa). In other words, two types of charge carriers — electrons and holes — comprise this main current through the transistor. As you can see, the controlling current and the controlled current always mesh together through the emitter wire, and their electrons always flow against the direction of the transistor’s arrow. This is the first and foremost rule in the use of transistors: all currents must be going in the proper directions for the device to work as a current regulator. The small, controlling current is usually referred to simply as the base current because it is the only current that goes through the base wire of the transistor. Conversely, the large, controlled current is referred to as the collector current because it is the only current that goes through the collector wire. The emitter current is the sum of the base and collector currents, in compliance with Kirchhoff’s Current Law. No current through the base of the transistor, shuts it off like an open switch and prevents current through the collector. A base current, turns the transistor on like a closed switch and allows a proportional amount of current through the collector. Collector current is primarily limited by the base current, regardless of the amount of voltage available to push it. The next section will explore in more detail the use of bipolar transistors as switching elements. REVIEW:Bipolar transistors are so named because the controlled current must go through two types of semiconductor material: P and N. The current consists of both electron and hole flow, in different parts of the transistor.Bipolar transistors consist of either a P-N-P or an N-P-N semiconductor “sandwich” structure.The three leads of a bipolar transistor are called the Emitter, Base, and Collector.Transistors function as current regulators by allowing a small current to control a larger current. The amount of current allowed between collector and emitter is primarily determined by the amount of current moving between base and emitter.In order for a transistor to properly function as a current regulator, the controlling (base) current and the controlled (collector) currents must be going in the proper directions: meshing additively at the emitter and going against the emitter arrow symbol. Lessons In Electric Circuits copyright (C) 2000-2010 Tony R. Kuphaldt
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۰۹
Shahram Ghasemi
Our exploration of thyristors begins with a device called the four-layer diode, also known as a PNPN diode, or a Shockley diode after its inventor, William Shockley. This is not to be confused with a Schottky diode, that two-layer metal-semiconductor device known for its high switching speed. A crude illustration of the Shockley diode, often seen in textbooks, is a four-layer sandwich of P-N-P-N semiconductor material, Figure below. Shockley or 4-layer diode Unfortunately, this simple illustration does nothing to enlighten the viewer on how it works or why. Consider an alternative rendering of the device’s construction in Figure below. Transistor equivalent of Shockley diode Shown like this, it appears to be a set of interconnected bipolar transistors, one PNP and the other NPN. Drawn using standard schematic symbols, and respecting the layer doping concentrations not shown in the last image, the Shockley diode looks like this (Figure below) Shockley diode: physical diagram, equivalent schematic diagram, and schematic symbol. Let’s connect one of these devices to a source of variable voltage and see what happens: (Figure below) Powered Shockley diode equivalent circuit. With no voltage applied, of course there will be no current. As voltage is initially increased, there will still be no current because neither transistor is able to turn on: both will be in cutoff mode. To understand why this is, consider what it takes to turn a bipolar junction transistor on: current through the base-emitter junction. As you can see in the diagram, base current through the lower transistor is controlled by the upper transistor, and the base current through the upper transistor is controlled by the lower transistor. In other words, neither transistor can turn on until the other transistor turns on. What we have here, in vernacular terms, is known as a Catch-22. So how can a Shockley diode ever conduct current, if its constituent transistors stubbornly maintain themselves in a state of cutoff? The answer lies in the behavior of real transistors as opposed to ideal transistors. An ideal bipolar transistor will never conduct collector current if no base current flows, no matter how much or little voltage we apply between collector and emitter. Real transistors, on the other hand, have definite limits to how much collector-emitter voltage each can withstand before one breaks down and conduct. If two real transistors are connected in this fashion to form a Shockley diode, each one will conduct if sufficient voltage is applied by the battery between anode and cathode to cause one of them to break down. Once one transistor breaks down and begins to conduct, it will allow base current through the other transistor, causing it to turn on in a normal fashion, which then allows base current through the first transistor. The end result is that both transistors will be saturated, now keeping each other turned on instead of off. So, we can force a Shockley diode to turn on by applying sufficient voltage between anode and cathode. As we have seen, this will inevitably cause one of the transistors to turn on, which then turns the other transistor on, ultimately “latching” both transistors on where each will tend to remain. But how do we now get the two transistors to turn off again? Even if the applied voltage is reduced to a point well below what it took to get the Shockley diode conducting, it will remain conducting because both transistors now have base current to maintain regular, controlled conduction. The answer to this is to reduce the applied voltage to a much lower point where too little current flows to maintain transistor bias, at which point one of the transistors will cutoff, which then halts base current through the other transistor, sealing both transistors in the “off” state as each one was before any voltage was applied at all. If we graph this sequence of events and plot the results on an I/V graph, the hysteresis is evident. First, we will observe the circuit as the DC voltage source (battery) is set to zero voltage: (Figure below) Zero applied voltage; zero current Next, we will steadily increase the DC voltage. Current through the circuit is at or nearly at zero, as the breakdown limit has not been reached for either transistor: (Figure below) Some applied voltage; still no current When the voltage breakdown limit of one transistor is reached, it will begin to conduct collector current even though no base current has gone through it yet. Normally, this sort of treatment would destroy a bipolar junction transistor, but the PNP junctions comprising a Shockley diode are engineered to take this kind of abuse, similar to the way a Zener diode is built to handle reverse breakdown without sustaining damage. For the sake of illustration I’ll assume the lower transistor breaks down first, sending current through the base of the upper transistor: (Figure below) More voltage applied; lower transistor breaks down As the upper transistor receives base current, it turns on as expected. This action allows the lower transistor to conduct normally, the two transistors “sealing” themselves in the “on” state. Full current is quickly seen in the circuit: (Figure below) Transistors are now fully conducting. The positive feedback mentioned earlier in this chapter is clearly evident here. When one transistor breaks down, it allows current through the device structure. This current may be viewed as the “output” signal of the device. Once an output current is established, it works to hold both transistors in saturation, thus ensuring the continuation of a substantial output current. In other words, an output current “feeds back” positively to the input (transistor base current) to keep both transistors in the “on” state, thus reinforcing (or regenerating) itself. With both transistors maintained in a state of saturation with the presence of ample base current, each will continue to conduct even if the applied voltage is greatly reduced from the breakdown level. The effect of positive feedback is to keep both transistors in a state of saturation despite the loss of input stimulus (the original, high voltage needed to break down one transistor and cause a base current through the other transistor): (Figure below) Current maintained even when voltage is reduced If the DC voltage source is turned down too far, though, the circuit will eventually reach a point where there isn’t enough current to sustain both transistors in saturation. As one transistor passes less and less collector current, it reduces the base current for the other transistor, thus reducing base current for the first transistor. The vicious cycle continues rapidly until both transistors fall into cutoff: (Figure below) If voltage drops too low, both transistors shut off. Here, positive feedback is again at work: the fact that the cause/effect cycle between both transistors is “vicious” (a decrease in current through one works to decrease current through the other, further decreasing current through the first transistor) indicates a positive relationship between output (controlled current) and input (controlling current through the transistors’ bases). The resulting curve on the graph is classically hysteretic: as the input signal (voltage) is increased and decreased, the output (current) does not follow the same path going down as it did going up: (Figure below) Hysteretic curve Put in simple terms, the Shockley diode tends to stay on once its turned on, and stay off once its turned off. No “in-between” or “active” mode in its operation: it is a purely on or off device, as are all thyristors. A few special terms apply to Shockley diodes and all other thyristor devices built upon the Shockley diode foundation. First is the term used to describe its “on” state: latched. The word “latch” is reminiscent of a door lock mechanism, which tends to keep the door closed once it has been pushed shut. The term firing refers to the initiation of a latched state. To get a Shockley diode to latch, the applied voltage must be increased until breakover is attained. Though this action is best described as transistor breakdown, the term breakover is used instead because the result is a pair of transistors in mutual saturation rather than destruction of the transistor. A latched Shockley diode is re-set back into its nonconducting state by reducing current through it until low-current dropout occurs. Note that Shockley diodes may be fired in a way other than breakover: excessive voltage rise, or dv/dt. If the applied voltage across the diode increases at a high rate of change, it may trigger. This is able to cause latching (turning on) of the diode due to inherent junction capacitances within the transistors. Capacitors, as you may recall, oppose changes in voltage by drawing or supplying current. If the applied voltage across a Shockley diode rises at too fast a rate, those tiny capacitances will draw enough current during that time to activate the transistor pair, turning them both on. Usually, this form of latching is undesirable, and can be minimized by filtering high-frequency (fast voltage rises) from the diode with series inductors and parallel resistor-capacitor networks called snubbers: (Figure below) Both the series inductor and parallel resistor-capacitor “snubber” circuit help minimize the Shockley diode’s exposure to excessively rising voltage. The voltage rise limit of a Shockley diode is referred to as the critical rate of voltage rise. Manufacturers usually provide this specification for the devices they sell. REVIEW:Shockley diodes are four-layer PNPN semiconductor devices. These behave as a pair of interconnected PNP and NPN transistors.Like all thyristors, Shockley diodes tend to stay on once turned on (latched), and stay off once turned off.To latch a Shockley diode exceed the anode-to-cathode breakover voltage, or exceed the anode-to-cathode critical rate of voltage rise.To cause a Shockley diode to stop conducting, reduce the current going through it to a level below its low-current dropout threshold. Les
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۰۹
Shahram Ghasemi
این وسیله از نظر ظاهر و ساختمان شبیه لامپی است که برای بررسی اثر میدانهای الکتریکی و آهنربایی پرتوهای کاتدی به کار می‌رود. تفاوت اساسی در این است که قبلا کاتد سرد بود و به علت بمباران با یونها ، الکترون گسیل می‌کرد. حالا چشم الکترون تفنگ الکترونی است که در قسمت باریک لامپ قرار دارد. تفنگ الکترونی تفنگ الکترونی عبارت است از کاتد التهابی (رشته) که الکترون گسیل می‌کند و آند که به شکل قرصی با سوراخ کوچک با قطری برابر با 1 تا 3mm ساخته می‌شود. اختلاف پتانسیلی از چند صد تا چند هزار ولت بین کاتد و آند برقرار می‌شود که در فضای بین آنها میدان الکتریکی شدیدی تشکیل می‌شود. این میدان به الکترودهایی که از کاتد گسیل می‌شوند تا سرعتهای بسیار بالایی شتاب می‌دهند. کاتد داخل استوانه فلزی است که به آن ولتاژ مثبتی (نسبت به کاتد) اعمال می‌شود که اندکی از ولتاژ آند کمتر است. عمل مشترک این استوانه و آند باعث می‌شوند که تقریبا تمام الکترونها در سوراخ آند جمع (کانونش پرتوهای کاتدی) و از آن به شکل نوار باریکی ، یعنی باریکه الکترونی ، خارج شوند. در محلی که این باریکه به پرده می‌خورد (ته لامپ که با ماده لیان پوشیده شده است)، نقطه تابان روشنی ظاهر می‌شود. طرز کار لامپ پرتوی کاتدی باریکه الکترونی خارج شونده از تفنگ الکترونی ، در مسیرش به طرف پرده ، از بین دو جفت صفحه‌های فلزی موازی می‌گذرند. اگر به جفت صفحه‌های اول ، ولتاژی اعمال شود، میدان یکنواختی ایجاد می‌شود و الکترونهایی را که از آن می‌گذرند به طرف صفحه‌ای مثبت منحرف می‌کند و لکه روشن روی پرده در امتداد افقی به طرف چپ یا راست منحرف خواهد شد. به همین ترتیب ، اگر ولتاژی به جفت صفحات دوم اعمال شود تا باریکه به طرف صفحه مثبت منحرف می‌گردد و لکه روشن روی پرده در امتداد قائم به طرف بالا یا پایین تغییر مکان می‌دهند. سپس از روی جا بجایی لکه روشن روی پرده می‌توان در مورد ولتاژ اعمال شده بر صفحات منحرف کننده ، نظر داد. در اینجا چیز مهم و حائز اهمیت این است که به علت جرم اینرسی ناچیز الکترونها ، به هر تغییر ولتاژ روی صفحات خیلی سریع واکنش نشان می‌دهد. بنابراین لامپ پرتوی کاتدی را می‌توان برای ردیابی فرآیندهایی که در آنها تغییرات بسیار سریع ولتاژ و جریان روی می‌دهند بکار برد. مسائلی از این نوع در مهندسی رادیو که در آنجا جریانها و ولتاژها چندین میلیون بار در ثانیه تغییر می‌کنند بسیار حائز اهمیت است. نوسان نگار پرتو کاتدی با مجهز کردن لامپ پرتو کاتدی با وسایل مناسبی جهت بررسی فرآیندهایی شبیه تغییر سریع ولتاژ و جریان وسیله‌ای ساخته می‌شود که نوسان نگار پرتوی کاتدی نامیده می‌شود. این وسیله نه فقط در مهندسی رادیو بلکه در بعضی شاخه‌های دیگر علم و تکنو لوژی نیز ابزار پژوهشی مهمی است و کار پژوهش در آزمایشگاههای علمی و صنعتی بدون آن دشوار است. کاربردهای لامپ پرتوی کاتدی تلویزیون یکی از وسایلی است که مجهز به لامپ پرتوی کاتدی است. می‌توان گفت که لامپ پرتوی کاتدی مهمترین قسمت دستگاههای تلویزیونی است. در دستگاههای تلویزیونی ، لامپهایی که بجای کنترل الکتریکی ، باریکه الکترونی را بطور مغناطیسی کنترل می‌کنند، نیز بطور عمده‌ای بکار می‌روند. تلویزیون با اعمال ولتاژ مناسب به جفت صفحات ، باریکه الکترون تمام صفحه (پرده) را با دسته خطوطی موازی و با سرعتی بالا هاشور می‌زند (روبش خط 4). اگر روشنایی نقطه لیان ، که با انرژی جنبشی الکترونها معین می‌شود، همواره ثابت بماند، پرده بطور یکنواخت تابان دیده خواهد شد. ولی سیگنالهایی که توسط ایستگاه پخش تلویزیونی انتقال می‌یابند و توسط دستگاه تلویزیون دریافت می‌شوند بسته به روشنایی تصویری که منتقل می‌شود بطور دائم ولتاژ شتاب دهنده الکترونها را افزایش یا کاهش می‌دهند بنابراین ، نقاط روی پرده روشنایی متفاوتی دارند و تصویر انتقال یافته و برای دریافت چشم انسان باز سازی می‌شود. تفنگ الکترونی که برای بدست آوردن پرتوهای کاتدی در کینسکوپ (لامپ تصویر تلویزیون) بکار می‌رود از یک کاتد گرم و یک آند با سوراخ مرکزی که مقابل کاتد قرار دارد و باریکه الکترون را جدا می کند ساخته شده است.
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۰۹
Shahram Ghasemi
- اسیلوسکوپ (oscilloscope) اصولا کلمه oscilloscope به معنی نوسان نما یا نوسان سنج است و این وسیله برای نمایش دوبعدی سیگنال های متغیر با زمان است. که محور افقی نمایش زمان و محور عمودی محور اختلاف ولتاژ بین دو نقطه از مدار است. پس اسیلوسکوپ فقط توانایی نمایش ولتاژ رو داره و وسیله ای صرفا برای اندازه گیری است و یک اسکوپ ایده آل نباید هیچ تاثیری بر روی سیگنال ورودی داشته باشه و فقط آن را نمایش بدهد.  2- تنظیمات پایه اگرچه کلیدهای کنترلی اسکوپ های مختلف کمی با هم فرق می کنند ولی در مجموع در اسکوپ های آنالوگ یک سری کلید های اساسی وجود دارد که اگرچه در ظاهر تفاوت هایی وجود دارد ولی در نهایت وظیفه ی آنها در مدل های مختلف یکی است . در شکل زیر یکی از ساده ترین مدل ها رو می بینید. این شکل به چهار قسمت مختلف تقسیم شده است که سه قسمت مهم آن نامگذاری شده که در زیر توضیح آنها را خواهید دید .     a. انتخاب وضعیت عمودی (کلید Vertical MODE در مرز مشترک قسمت 2 و 3) بسته به این که بخواهیم از کدام یک از ورودی های اسکوپ استفاده کنیم می تونیم کلید MODE رو تنظیم کنیم که به ترتیب از بالا به پایین اسکوپ، روی صفحه نمایش، کانال یک، کانال دو، دو موج را همزمان و در وضعیت ADD، جمع ریاضی دو موج را نشان خواهد داد. توجه1: بعضی از اسکوپ ها بجای کلید DUAL دو کلید دیگر به نام های ALT و CHOP دارند که هر دوی آن ها هم دو موج را همزمان نمایش می دهند اما تفاوت ALT و CHOP در این است که ALT یک دوره تناوب از یک موج رو به طور کامل و بسیار سریع نمایش میدهد و بعد موج کانال دیگه را . اما این تغییر انقدر سریع انجام میشود که ما آن رو حس نمی کنیم. اما وضعیت CHOP به صورت انتخابی بریده هایی از یک موج و بریده هایی از یک موج دیگر را هم زمان نشان میدهد که ممکن است شکل موج در فرکانس های پایین با نقطه هایی خالی نشان داده شود. توجه2: ( MODE X-Y) در بعضی از اسکوپ ها دکمه ی تغییر وضعیت به X-Y در کنار همین دکمه های Vertical mode قرار دارد و در بعضی در قسمت تریگر و برخی در قسمت های دیگه مثلا کلید MODE (نه Vertical MODE مثل چیزی که در بالا توضیح داده شد). اما چیزی که مهم است این است که این وضعیت برای حذف بین دو کانال استفاده میشود و در واقع آنچه بر روی اسکوپ نشان داده میشود ، مشخصه ی انتقالی بین دو نقطه است که محور عمودی معرف تغییرات کانال A و محور افقی نمایش تغییرات کانال B است. b.کنترل زمان همان طور که در شکل قسمت 1 می بینید صفحه نمایش (CRT) اسکوپ با واحدهایی مدرج شده که در مورد زمان برای پیدا کردن فرکانس موج استفاده می شود به این شکل که فرض کنیم یک موج به ورودی اسکوپ وارد شده(منبع اش می تواند مثلا یک سیگنال ژنراتور یا یک ترانس باشد که توضیح داده خواهد شد) و ما می خواهیم فرکانس ان را پیدا کنیم. اول باید سوییچ Sweep time/Div رو به صورتی تنظیم کنیم که یک موج ثابت با حداقل یک دوره ی تناوب بر روی صفحه مشخص شود ، بعد از آن عددی را که سوییچ روی آن است در واحد آن قسمت ضرب کنیم و به این ترتیب دوره ی تناوب یا پریود موج به دست می یاد که با معکوس کردن آن می توانیم فرکانسش را به دست بیاوریم. مثلا فرض کنیم در مورد موج بالا اگه سوییچ time/div(بخوانید تایم دیویژن) روی عدد 5 در قسمت ms باشد ، نشان می دهد که هر واحد افقی ما 5 میلی ثانیه رو نشان داده و از آن جایی که موج ما در یک دوره ی تناوب در امتداد 4 خانه قرار گرفته ، پس 4 تا 5 میلی ثانیه که 20 میلی ثانیه (یا 0.02 ثانیه) است دوره ی تناوب این موج است و در نتیجه فرکانس آن 0.02/1 یا پنجاه هرتز است که مثلا می تواند خروجی یک ترانس از برق شهری باشد . c.کنترل ولتاژ یا دامنه کنترل دامنه یا روش خواندن دامنه ی موج دقیقا مثل روش خوندن زمانه با این تفاوت که باید واحد های عمودی در Volt/Div (بخوانید ولت دیویژن) ضرب شود . مثلا در مورد موج بالا اگه بخواهیم ولتاژ P-P (پیک تو پیک یا از قله تا قله) را اندازه بگیریم. با فرض اینکه Volt/Div بر روی عدد 1 باشه از قله تا قله ی موج ما 4 خانه رو اشغال کرده که ضربدر عدد یک، 4 ولت رو نشون میده. و این تنظیمات برای هر کانال ورودی باید به طور جداگانه انجام شود و موج هر کانال باید بر اساس مقیاس خودش خوانده شود . نکته ی مهم: در اکثر اسکوپ ها روی دستگیره های Time/Div و Volt/Div یه دستگیره ی کوچکتر وجود داره که برای کالیبره کردن اسکوپ استفاده میشه و ما همیشه باید قبل از تنظیم این سوییچ ها این دستگیره ی کوچکتر را تا انتها در جهت عقربه های ساعت بچرخانیم در غیر اینصورت اندازه گیری های ما صحیح نخواهد بود. d. انتخاب وضعیت های AC , GND , DC این کلید سه حالته که معمولا زیر Volt/Div قرار دارد به ما امکان میده که نوع خروجی مان را انتخاب کنیم به این صورت که اگر کلید در وضعیت AC قرار داشته باشه تنها مولفه ی AC سیگنال نمایش داده خواهد شد و مقدار DC یا آفست موج ما حذف خواهد شد. وضعیت GND ورودی ما را به زمین اتصال کوتاه می کند و امکان تنظیم عمودی سطح صفر را به ما میدهد . و وضعیت DC موج را دست نخورده و بدون تغییر به ما نشان می دهد که این موج مقدار شامل DC و AC خواهد بود. توجه: همیشه در ابتدای کار باید از تنظیم بودن وضعیت صفر اسکوپ مطمئن شویم به این ترتیب که کلید را در حالت GND قرار داده و با دستگیره های Position خط افقی را بر روی صفر قرار دهیم. اینکار را باید برای هر کانال به طور جداگانه باید انجام دهیم و برای تغییر وضعیت از یک کانال به کانال دیگر می تولنیم از کلید MODE (که توضیح داده شد) استفاده کنیم. نکته1: استفاده از وضعیت AC اگرچه می تواند باعث مسدود کردن مقدار DC موج شود اما در فرکانس های پایین می تواند باعث اعوجاج و به هم ریختگی شکل موج شود و دلیل این مسئله استفاده از خازن های ظرفیت بالایی است که برای حذف مقدار DC موج درون اسکوپ وجود دارد .  نکته2: اگرچه استفاده از وضعیت AC ، ممکن است مشکل مطرح شده در قسمت الف را بوجود بیاورد ، اما استفاده ی مفید آن می تواند برای اندازه گیری ریپل های بسیار کوچک موجود بر روی ولتاژ های به ظاهر DC باشد .(چگونه ؟) نکته3: تنها مشکل وضعیت DC این است که ممکن است مقدار DC موج، مزاحم اندازه گیری دقیق مقدار AC شود . اساسی ترین مسائل مربوط به اسکوپ را بررسی کردیم ولی مطالب دیگری هم وجود دارد که معمولا در استفاده های مقدماتی کمتر از آنها استفاده میشود مثل تریگر کردن اسکوپ با یک منبع خارجی(و کلا بخش Triggering) یا کالیبره کردن اسکوپ بوسیله ی سیگنال مربعی که اسکوپ در اختیارمون قرار میدهد و یا مسایل نسبتا گسترده در رابطه با پروب ها جهت اندازه گیری های بسیار دقیق و ... ) راهنمای قدم به قدم استفاده از اسکوپ  قدم اول: روشن کردن اسکوپ! قدم دوم: اطمینان از کالیبره بودن اسکوپ کلید های Gain Variable Control را که به صورت کلیدی کوچکتر بر روی کلیدهای Volt/Div و Time/Div وجود دارد تا انتها در جهت عقربه های ساعت بچرخانید.  قدم سوم: تنظیم زمین اسکوپ کلید سه حالته ی AC GND DC را برای هر دو کانال در حالت GND قرار بدید و با دستگیره ی Position محور عمودی را روی صفر قرار بدهید. بوسیله ی کلیدهای Intensity و Focus به ترتیب شدت نور و نازکی موج را تنظیم کنید و بعد از تنظیم زمین کلیدها را در وضعیت DC قرار بدهید.   قدم چهارم: وصل مدار به اسکوپ اگر از یک کانال می خواهید استفاده کنید با یک پروب و اگه از دو کانال با دو پروب باید مدار را به اسکوپ وصل کنید. به این صورت که سوکت پروب را به ورودی کانال مورد نظر وصل کنید و سر دیگه ی اون را به دو سر المان یا قسمتی از مدار که می خواهید تغییرات ولتاژ اون رو بررسی کنید، وصل کنید قدم پنجم: پایداری موج اگه موجی که روی صفحه نشون داده میشه یا سریع حرکت میکنه، دستگیره ی Trigger Level را در حالت وسط قرار بدید و کمی Time/Div را هم تغییر بدید تا شکل موج واضحتر بشه و اگه موجتون ثابت بود به قدم بعد برید.  قدم ششم: انتخاب منبع کانال مورد نظرتون را برای نمایش روی صفحه بوسیله ی کلید چند حالته ی Vertical Mode انتخاب کنید. اگه هر دو کانال را هم زمان می خواهید ببینید یکی از حالتهای ALT یا CHOP را انتخاب کنید و اگه مجموع دو موج مورد نظرتونه وضعیت ADD را انتخاب کنید.    قدم هفتم: اندازه گیری مشخصات موج تعداد خونه های افقی را که در امتداد یک دوره ی تناوب قرار گرفته اند در واحد Time/Div ضرب کنید و عدد به دست اومده را معکوس کنید تا فرکانس موج بدست بیاد. برای بدست اوردن دامنه ی سیگنال، تعداد خانه های افقی را از قله تا پایین ترین نقطه ی موج بشمارید و در Volt/Div آن کانال ضرب کنید. عدد به دست آمده اندازه ی دامنه ی P-P موج خواهد بود. اگر مدارتان را درست بسته باشید و اسکوپ تان هم سالم باشد باید بعد از این مراحل یک شکل موج ثابت را بر روی اسکوپ ایجاد کرده باشید و مشخصات آن را هم اندازه گیری کرده باشید. در غیر اینصورت باید دنبال پیدا کردن اشکال مدارتان یا اطمینان از سالم بودن اسکوپ داشته باشید.
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۰۹
Shahram Ghasemi
یه دستور جالب هست که شما میتونید با اون صدا درست کنید مثلا میتونید برنامه بنویسید وقتی کلیدی را فشار میدهید صدای Beeb بدهد و اگر حوصله داشته باشی (چون برنامه زیاد میشه) یه آهنگ خوب درست کنی یا صدای دزدگیر باهاش بسازی.من سر رشته رو دستتون میدم بقیش با خودتون (هر آهنگ یا زنگی میخوای درست کنید)این آهنگ زیر که یک تیکه کوچیک هست از ساخته های خودم هست:)همونطور که میبینید با دستور sound میشه صدا درست کرد >>حالا این کلا یعنی چی ؟>> کار خاصی نمیکنه یه تیکه آهنگه که دایم تکرار میشه با بستن مدار زیر در آزمایشگاه مجازی میتونید صدای آهنگ رو از speakr کامپوترت بشنوی و با تغییر اعداد جلوی دستور sound آهنگ مورد علاقه خودتو درست کنی حالا این اعداد چیه؟>> اول نقشه مدارو ببینید تا برنامه رو کلا توضیح بدم.همونطور که میبینید تنها کاری که شما باید بکنید اینه که برنامه رو بریزی داخل حافظه میکرو و یک speaker یا buzz به یکی از پورتای میکرو وصل کنید.توضیح برنامه----------------------من پورت portb.0 رو خروجی تعیین کردم و speaker هم باید به این پورت وصل کنم یه دستور خیلی خوب هم در خط چهارم میبینید این چیه؟؟؟>>برای تغییر اسم پورت استفاده کردم یعنی من اسم این پورت رو گذاشتم S و در برنامه دیگه نیاز نیست که بگم portb.0  دیگه میگم S اینجوری راحترهدر داخل حلقه do loop  دستور sound رو قرار دادم تا صدا به طور دایم تکرار بشه >>حالا اعداد جلوی sound چیه؟> S که یعنی همون portb.0 برای اینکه یکسره اسم طولانی ننویسم از S استفاده کردم (اگر دستور خط چهارم رو ننویسید باید حتما اسم پورت رو کامل بنویسید) عدد بعد از S طول موج صدا را نشان میدهد که هر چقدر بیشتر باشد صدا کشیده تر میشود و عدد دوم  میزان (زیر و بم صدا میباشد) با تغییر این اعداد آهنگ بسازید.اینم برنامه  آلارم دزد گیر----------------------------------
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۰۹
Shahram Ghasemi
این مدار دارای یک کلید میباشد که با زدن آن یک رله را فعال میکند و بروی سون سگمنت On را نمایش میدهد و دوباره با زدن آن رله را غیر فعال و بروی سون سگمنت OF را نمایش میدهد .شما باید این برنامه را در محیط نرم افزار Bascom avr نوشته سپس کامپایل کنید و ذخیره و فایل HEX آن را توسط یکی از پروگرمرها که (نقشه پروگرمر هم در این وبلاگ گذاشتم ) آیسی میکرو atmega 8 را پروگرم کنید. (در پست های قبل آموزش دادم ).نقشه مدار ==========توجه : سون سگمنت از نوع کاتد مشترک هست .من بجای مصرف کننده از LED استفاده کردم.در این نقشه لامپ 220 ولت بجای مصرف کننده استفاده شده===============توجه:برای دیدن نقشه و برنامه باید نرم افزارهای bascom-avr و proteuse7.2 بروی سیستم شما نصب باشد.برای دانلود نقشه وفایل سورس و هگزا برنامه اینجا کلیک کنید
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۰۹
Shahram Ghasemi
این پروژه مربوط به یک شمارنده میباشد که توسط یک کلید بر شمارش خود افزایش میدهد تااااااا 9999 و این شمارش را بروی یک سون سگمنت 4تایی ( 7segment 4digit ) نشان میدهد>>  ما میتوانیم بجای این کلید یک سنسور قرار داده و از آن برای شمارش قطعات در تولیدی ها استفاده کنیم .این شمارش توسط یک کلید دیگر صفر میشود. نشان دادن اعداد بروی lcd  نیاز به برنامه کمتری نسبت به 7segment دارد اگر بخواهیم همین عدد را بروی lcd نمایش بدهیم با چند خط برنامه به راحتی میتوانیم این کارو بکنیم. 7segment چهار تایی یا به قول خارجی ها 4digit این سون سگمنت چهار پایه(1,2,3,4) برای روشن کردن هر سون سگمنت و 7 پایه(A,B,C,D,E,F,G) برای روشن کردن هر سگمنت و یک پایه برای روشن کردن نقطه (DP) دارد .>>اگر سون سگمنت ما  از نوع کاتد مشترک باشد باید به پایه های 1و2و3و4 صفر و پایه های  A,B,C,E,D,F,G یک باشند(با توجه به اینکه چه عددی میخواهید نمایش بدهید) >>مثلا برای نشان دادن عدد یک در سون سگمنت دوم باید پایه شماره 2 صفر باشد و پایه B,C یک باشد تا عدد یک در سون سگمنت دوم روشن شود>>>>> در نوع آند مشترک برعکس این حالت میباشد. نقشه پایه های یک سون سگمنت 4تایی  ---------------------------------------------------    نقشه مدار  ----------------------   این مدار توسط کلید counter یکی بر شمارش خود افزایش میدهد و توسط کلید reset شمارش خود را صفر میکند. برنامه مربوط به مدار فوق ----------------------------------------------------------------- نگران نوشتن برنامه نباشید برای راحتی کار شما کامپایل(سورس و هگزا) برنامه به همراه فایل پروتیوس (نقشه مدار) برای دانلود گذاشتم . من در برنامه بالا کد های مربوط به سون سگمنت را بصورت باینری نوشتم (در زیربرنامه sa) برای راحتی شما میتوانید برنامه زیر را دانلود کنید و کد را بصورت هگز دریافت کنید و در این زیر برنامه بنویسید (البته فرقی نمیکند برای تولید کد های دیگر گفتم) >> فقط کافیه سگمنت هایی که میخواهید روشن شود کلیک کنید و بروی دکمه اضافه کردن کلیک کنید تا کد بصورت هگزا برای شما درست شود. نمایی از برنامه -------------------------    پسورد فایل :www.yazdkit.com دانلود برنامه
موافقین ۰ مخالفین ۰ ۲۶ آبان ۹۰ ، ۱۴:۰۹
Shahram Ghasemi