مهندسی پزشکی

مقالات مهندسی پزشکی

مهندسی پزشکی

مقالات مهندسی پزشکی

۱۱۵ مطلب با موضوع «روباتیک» ثبت شده است

آشنایی با اسیلوسکوپ: به دلیل اینکه این تصاویر در سایت های آپلود عجنبی غیر استاندارد آپلود شده بودند درصد زیادی از انها پاک شده بودند به هر حال می شود از بقیه تصاویر که ظاهرا از سرور انگلیسی هستند استفاده کرد. اسیلوسکوپ یک دستگاه اندازه گیری است که می توان از ان برای مشاهده و اندازه گیری ولتاژً,فرکانس , زمان  تناوب , اختلاف فاز و همچنین مشخصه های ولت وآمپر عناصر نیمه هادی ( مانند دیودها ,ترانزیستورها ,و...) استفاده کرد. صفحه نمایشگر: هر اسیلوسکوپ دارای یک صفحه نمایشگر است که دو قسمت اصلی تشکیل شده است:الف) محور زمان     ,    ب ) محور ولتاژ   در اسیلوسکوپ درجه بندی بر حسب سانتیمترو میلیمتر می باشد (خانه های بزگ 1 سانتی متری وخانه های کوچک 2میلیمتری میباشد.) کانال : ورود هر اسیلوسکوپ کانال نامیده می شود که هر اسیلوسکوپبر اساس تعداد کاتالهایی که می توان به ان اعمال کرد تقسیم بندی می شود : یک کاناله , دو کاناله , سه کاناله و چهار کاناله که اسیلوسکوپهای 3و4 کاناله دیجیتال می باشند. الف) اسیلوسکوپ انالوگ :بر اساس انحراف الکترون در میدان الکتروستاتیکی کار می کند  لامپ پرتو کاتدی اسیلوسکوپ از یک لامپ پرتو کاتدی که قلب دستگاه است و تعدادی مدار برای کار کردن لامپ پرتو کاتدی تشکیل شده است. قسمتهای مختلف لامپ پرتو کاتدی عبارتند از: تفنگ الکترونی : تفنگ الکترونی باریکه متمرکزی از الکترونها را بوجود می‌‌آورد که شتاب زیادی کسب کرده‌اند. این          باریکه الکترون با انرژی کافی به صفحه فلوئورسان برخورد می‌کند و بر روی آن یک لکه نورانی تولید می‌‌کند. تفنگ الکترونی از رشته گرمکن ، کاتد ، شبکه آند پیش شتاب دهنده ، آند کانونی کننده و آند شتاب دهنده تشکیل شده است. الکترونها از کاتدی که بطور غیر مستقیم گرم می‌شود، گسیل می‌‌شوند. این الکترونها از روزنه کوچکی در شبکه کنترل می‌‌گردند. شبکه کنترل معمولا یک استوانه هم محور با لامپ است و دارای سوراخی است که در مرکز آن قرار دارد. الکترونهای گسیل شده از کاتد که از روزنه می‌‌گذرند (به دلیل پتانسیل مثبت زیادی که به آندهای پیش شتاب دهنده و شتاب دهنده اعمال می‌‌شود)، شتاب می‌‌گیرند. باریکه الکترونی را آند کانونی کننده ، کانونی می‌‌کند. صفحات انحراف دهنده : صفحات انحراف دهنده شامل دو دسته صفحه است. صفحات انحراف قائم که بطور افقی نسب می‌شوند و یک میدان الکتریکی در صفحه قائم ایجاد می‌‌کنند و صفحات y نامیده می‌‌شوند. صفحات انحراف افقی بطور قائم نصب می‌شوند و انحراف افقی ایجاد می‌‌کنند و صفحات x نامیده می‌‌شوند. فاصله صفحات به اندازه کافی زیاد است که باریکه بتواند بدون برخورد با آنها عبور کند. صفحه فلوئورسان : جنس این پرده که در داخل لامپ پرتو کاتدی قرار دارد، از جنس فسفر است. این ماده دارای این خاصیت است که انرژی جنبشی الکترونهای برخورد کننده را جذب می‌‌کند و آنها را به صورت یک لکه نورانی ظاهر می‌سازد. قسمتهای دیگر لامپ پرتو کاتدی شامل پوشش شیشه‌ای ، پایه که از طریق آن اتصالات برقرار می‌‌شود، است. مولد مبنای زمان اسیلوسکوپها بیشتر برای اندازه گیری و نمایش کمیات وابسته به زمان بکار می‌‌روند. برای این کار لازم است که لکه نورانی لامپ روی پرده با سرعت ثابت از چپ به راست حرکت کند. بدین منظور یک ولتاژ مثبت به صفحات انحراف افقی اعمال می‌‌شود. مداری که این ولتاژ مثبت را تولید می‌‌کند، مولد مبنای زمان یا مولد رویش نامیده می‌‌شود. مدارهای اصلی اسیلوسکوپ سیستم انحراف قائم چون سیگنالها برای ایجاد انحراف قابل اندازه گیری بر روی صفحه لامپ به اندازه کافی قوی نیستند، لذا معمولا تقویت قائم لازم است. هنگام اندازه گیری سیگنالهای با ولتاژ بالا باید آنها را تضعیف کرد تا در محدوده تقویت کننده‌های قائم قرار گیرند. خروجی تقویت کننده قائم ، از طریق انتخاب همزمانی در وضعیت داخلی، به تقویت کننده همزمان نیز اعمال می‌‌شود. سیستم انحراف افقی صفحات انحراف افقی را ولتاژ رویش که مولد مبنای زمان تولید می‌‌کند، تغذیه می‌کند. این سیگنال از طریق یک تقویت کننده اعمال می‌‌شود، ولی اگر دامنه سیگنالها به اندازه کافی باشد، می‌‌توان آن را مستقیما اعمال کرد. هنگامی ‌که به سیستم انحراف افقی ، سیگنال خارجی اعمال می‌‌شود، باز هم از طرق تقویت کننده افقی و کلید انتخاب رویش در وضعیت خارجی اعمال خواهد شد. اگر کلید انتخاب رویش در وضعیت داخلی باشد، تقویت کننده افقی ، سیگنال ورودی خود را از مولد رویش دندانه‌داری که با تقویت کننده همزمان راه اندازی می‌‌شود، می‌‌گیرد.  همزمانی هر نوع رویشی که بکار می‌‌رود، باید با سیگنال مورد بررسی همزمان باشد. تا یک تصویر بی حرکت بوجود آید. برای این کار باید فرکانس سیگنال مبنای زمان مقسوم علیه‌ای از فرکانس سیگنال مورد بررسی باشد. مواد محو کننده در طی زمان رویش ، ولتاژ دندانه‌دار رویش اعمال شده به صفحات x ، لکه نورانی را بر یک خط افقی از چپ به راست روی صفحه لامپ حرکت می‌دهد. اگر سرعت حرکت کم باشد، یک لکه دیده می‌‌شود و اگر سرعت زیاد باشد، لکه به صورت یک خط دیده می‌‌شود. در سرعتهای خیلی زیاد ، ضخامت خط کم شده و تار به نظر می‌‌رسد و یا حتی دیده نمی‌‌شود. کنترل وضعیت وسیله‌ای برای کنترل حرکت مسیر باریکه بر روی صفحه لازم است. با این کار شکل موج ظاهر شده بر روی صفحه را می‌‌توان بالا یا پائین یا به چپ یا راست حرکت داد. این کار را می‌‌توان با اعمال یک ولتاژ کوچک سیستم داخلی (که مستقل است) به صفحات انحراف دهنده انجام داد. این ولتاژ را می‌‌توان با یک پتانسیومتر تغییر داد. کنترل کانونی بودن الکترود کانونی کننده مثل یک عدسی با فاصله کانونی تغییر می‌‌کند. این تغییر با تغییر پتانسیل آند کانونی کننده صورت می‌‌گیرد. کنترل شدت شدت باریکه با پتانسیومتر کنترل کننده شدت که پتانسیل شبکه را نسبت به کاتد تغییر می‌‌دهد، تنظیم می‌‌شود. مدار کالیبره سازی در اسیلوسکوپهای آزمایشگاهی معمولا یک ولتاژ پایدار داخلی تولید می‌‌شود که دامنه مشخصی دارد. این ولتاژ که   برای کالیبره سازی مورد استفاده قرار می‌گیرد، معمولا یک موج مربعی است ب) اسیلوسکوپ دیجیتال :اساس کار این نوع  اسیلوسکوپ نمونه برداری از شکل موج ورودی میباشد , هر چه نمونه برداری بیشتر باشد شکل موج نمایش داده شده دقیقتر خواهد بود.(که بلوک دیاگرام ان را در شکل زیر میبینید) کلیدهای روی اسیلوسکوپ در سه دسته تقسیم بندی می شود. اگرچه کلیدهای کنترلی اسکوپ های مختلف کمی با هم فرق می کنه ولی در مجموع در اسکوپ های آنالوگ یک سری کلید های اساسی وجود داره که اگرچه در ظاهر تفاوت هایی وجود داره ولی در نهایت وظیفه ی اونا در مدل های مختلف یکیه و در شکل زیر یکی از ساده ترین مدل ها رو می بینید 1-    قسمت vertical :   1-1   ) CH1  :ورودی شماره یک اسیلوسکوپ 1-2   ) CH2  :ورودی شماره دو اسیلوسکوپ1-3   ) کلید (AC-GND-DC  ) 1-3-1)مد AC : اگر کلید روی این قسمت قرار گیرد فقط سیگنال جریان متناوب وارد اسیلوسکوپ  می شود واز نمایش ولتا ژ DC جلوگیری می شود.1-3-2)مد DC : اگر کلید روی این حالت تنظیم شود سیگنال ورودی هر چه باشد ( اعم از DC یا AC یا ترکیبی از هر دو)روی صفحه نمایش داده می شود .1-3-3) مد GND : اگر این حالت انتخاب شود , ورودی اسیلوسکوپ به زمین وصل می شود و ارتباط الکتریکی بین پروپ و اسیلوسکوپ قطع می شود. این حالت برای تنظیم صفر اسیلوسکوپ کاربرد دارد.1-4 ) ولوم VARIABLE : که بر روی سلکتور VOLT/DIV قرار دارد و برای کالیبره کردن دستگاه بکار می رود که باید همیشه در منتها علیه سمت راست قرار گیرد(جهت عقربه های ساعت بچرخونیم) تا ضریب 1 داشته باشد.(برای صفر کردن خطای ولتاژ)1- 5) ولوم POSITION  : بااین ولوم می توان شکل موج روی صفحه نمایش را عمودی حرکت داد.    1-6 ) کلید mode  : این کلید چهار وضعیت دارد:     الف)CH1    ب)CH2   ج) DUAL  د) ADD  بسته به این که بخواهیم از کدوم یک از ورودی های اسکوپ استفاده کنیم می تونیم کلید MODE رو تنظیم کنیم که به ترتیب از بالا به پایین اسکوپ، روی صفحه نمایش، کانال یک، کانال دو، دو موج راهمزمان و در وضعیت ADD، جمع ریاضی دو موج را نشان خواهد داد1-7) ولوم VOLT/DIV : با تغییر این پتانسیومتر دامنه ی موجی که در صفحه نمایش ظاهر می شود , تغییر میکند نکته: با تغییر مقیاس(مقدار VOLT/DIV ) میتوان هر شکل موجی رابر روی صفحه نمایش نشان داد .اسیلوسکوپ هیچ نوع دخل وتصرفی در(مقدار دامنه یا پریود) موج نمی کند وتنها مقیاس را تغییر می دهد.(صحیح ترین انتخاب مقیاس برای نشان دادن موج این است که شکل موج در ماکزیمم دامنه قابل دید(بزرگترین حالت پیک تو پیک)وداشتن 1یا2 پریود میباشد.)1-8) دکمه فشاری ALT :با فشار دادن این دکمه هر دو کانال با هم موج به اسیلوسکوپ داده وموج هر دو کانال با هم رسم می شود ولی شکل موج های ان در تمام لحظات با هم در صفحه اسیلوسکوپ دیده نمی شود . بلکه یک در میان روی صفحه حساس ظاحر می شوند. 1-9) دکمه فشاری CHOP :با فشار دادن این دکمه کنال 1و2 هر دو روشن شده وموان دو موج جداگانه را توسط ورودی های این دو کانال به طور مجزا در صفحه سیلوسکوپ مشاهده نمود. نکته:یک دوره تناوب از یک موج رو به طور کامل و بسیار سریع نمایش میده و بعد موج کانال دیگه رو. اما این تغییر انقدر سریع انجام میشه که ما اون رو حس نمی کنیم. اما وضعیت CHOP به صورت انتخابی بریده هایی از یک موج و بریده هایی ازیک موج دیگه رو هم زمان نشون میده که ممکنه شکل موج در فرکانس های پایین با نقطه هایی خالی نشون داده بشه. 1-    قسمت TRIGER  : 2-1) SOURSE : برای نمایش یک شکل موج پایدار در صفحه اسیلوسکوپ لازم است شکل موج جاروب کننده (SWEEPR)با شکل موج ورودی سنکرون(همزمانی) داسته باشد لذا برای سنکرون کردن لازم است یک شکل موج به ان اعمال شود که نوع این سیکنال سنکرون کننده در محل SOURSE  بصورت زیر تعیین می شود. 2-1-1)CH1 وch2  :اگر در یکی از این دو وضعیت باشد , باید برای پایدار بودن موج هر کانال در قسمت vertical  در وضعیت مشابه sourse  باشد یعنی اگر CH1 بود,SOURSE هم CH1 و اگر CH2 بود, SOURSE هم باید  CH2باشد (در این صورت اگر موج ثابت نشد از کلید LEVEL برای نگه داشتن موج استفاده می کنیم.) 2-1-2) EXT :اگر در این وضعیت قرار گیرد می توان سیگنال جاروب کنده را از خارج توسط ترمینال (EXT-TRIG)راه انداز خارجی موج با فرکانس لازم را به صفحات افقی داد. 2-1-3) اگر فرکانس سیگنال همان فرکانس برق شهر باشد از دکمه ی INE برای تامین سیگنال جاروب کننده استفاده می کنیم. 2-2) HEVEL  :برای نگه داشتن موج به کار می رود . 2-3) SLOP  : نمودار را نسبت به محور V قرینه می کند. 2-4)   TRIC : تحریک کننده مدار می باشد. 2-    قسمت HORIZONTAL :   3-1)ولوم POSITION   : با این ولوم می توان شکل موج روی صفحه نمایش گر را در جهت افقی حرکت داد.     3-2) سلکتور TIME/DIV :با تغییر این کلید پریود موج تغییر میکند . در نتیجه واحد زمان بر روی محور Tها عوض می شود .برای خواندن مقدار پریودواقعی یک موج تعداد واحدهای دیده شده را در عدد TIM/DIV  می کنیم.  ذ0633در روی این سلکتور سه دسته تنظیمات بر حسب ثانیه (S) میلی ثانیه(MS) و میکرو ثانیه ( ) وجود دارد که در موقع تبدیل باید به این واحدها توجه نمود 3-3)ولوم SWP VAR :با این ولوم می توان تعداد بیشتری شکل موج را روی صفحه منعکس کرد.(برای صفرکردن خطای فرکانس) 3-4)کلید فشاری MAG10:با فشار دادن این کلید موج 10 برابر می شود.پروب(PROBE):برای مشاهده ی شکل موج اعمال به اسیلوسکوپ در ابتدا با پروب سیگنال الکتیریکی را به ورودی اسیلوسکوپ وصل میکنیم. سیم رابط اسیلوسکوپ از سه قسمت تشکیل شده است 1)مغزی فلزی که به کانال اسیلوسکوپ وصل می شود وB.N.C نامیده می شود 2)پروب که به مدار متصل می شود 3) وسیم shild که پروب را به b.n.c متصل کرده است.   در روی پروب کلید (1*) و(10*) وجود دارد .چنانچه دامنه سیگنال ورودی کم باشد از حالت 1* وچنانچه دامنه سیگنال ورودی بزرگ باشد از حالت 10* استفاده می شود .(در حالت ورودی 10* سیگنال ورودی 10 برابر تضعیف می شود). مدار داخلی پروبنحوه ی اندازه گیری با اسیلوسکوپ:قبل از شروع کار با اسیلوسکوپ باید دو کار انجام دهیم:الف)تنظیمات اولیه: کلید های Gain Variable Control رو که به صورت کلیدی کوچکتر بر روی کلیدهایVolt/DiV  و Time/Div(طوسی رنگ) وجود داره تا انتها در جهت عقربه های ساعت بچرخونید.در اسیلوسکوپهای انالوگ کلیدهای کشویی رو به بالا وکلیدهای فشاری همه بیرون باید باشد. ب) کلید سه حالته ی AC GND DC رو برای هر دو کانال در حالت GND قراربدید و با دستگیره ی Position محور عمودی رو روی صفر قرار بدید. بوسیله ی کلیدهای Intensity و Focus  به ترتیب شدت نور و نازکی موج رو تنظیم کنید و بعد از تنظیم زمین کلیدها رو در وضعیت DC قرار بدید. 1-    انداره گیری ولتاژ(دامنه):تعداد خونه های عمودی محصور شده رو از قله تا پایین ترین نقطه ی موج بشمارید و در Volt/Div اون کانال ضرب کنید. عدد به دست اومده اندازه ی دامنه ی P-P موج خواهد بود. به عنوان مثال اگر در حالتی که VOLT/DIV روی عدد 2 وتعداد خانه های محصور شده توسط موج در راستای عمودی برابر 3.4 باشد انگاه برای بدست اوردن مقدار ولتاژاز ضرب این دو عدد داریم:                                                                   دامنه(ولتاژ) = عدد volt/div  ×  تعداد خونه های عمودی     3.4           ×           2       =       6.8 V         1-    اندازه گیری پریود یا فرکانس: الف )تعداد خونه های افقی رو که در امتداد یک دوره ی تناوب قرار گرفته اند در واحد Time/Div ضرب کنید و عدد به دست اومده رو معکوس کنید تا فرکانس موج بدست بیاد.مثلا عدد time/div روی ms50  وتعداد خونه های افقی در یک دوره برابر 5.2 (پریود)  T =  عدد time/div   ×    تعداد خونه های افقی 5.2             ×        50ms       =260ms                                                                       F=1/T=1/260ms=3.8hz
موافقین ۰ مخالفین ۰ ۲۱ آبان ۹۰ ، ۱۱:۴۱
Shahram Ghasemi
گسترش ارتباطات و راحتی انتقال اطلاعات از طریق سیستم های انتقال و مخابرات فیبر نوری یکی از پر اهمیت ترین موارد مورد بحث در جهان امروز است. سرعت دقت و تسهیل از مهمترین ویژگی های مخابرات فیبر نوری می باشد. یکی از پر اهمیت ترین موارد استفاده از مخابرات فیبر نوری آسانی انتقال در فرستادن سیگنال های حامل اطلاعات دیجیتالی است که قابلیت تقسیم بندی در حوزه زمانی را دارا می باشد.این به این معنی است که مخابرات دیجیتال تامین کننده پتانسیل کافی برای استفاده از امکانات مخابره اطلاعات در پکیجهای کوچک انتقال در حوزه زمانی است.برای مثال عملکرد مخابرات فیبر نوری با توانایی ۲۰ مگا هرتز با داشتن پهنای باد ۲۰ کیلو هرتز دارای گنجایش اطلاعاتی ۰.۱% می باشد.امروزه انتقال سیگنالها به وسیله امواج نوری به همراه تکنیکهای وابسته به انتقال شهرت و آوازه سیستم های انتقال ماهوارهای را به شدت مورد تهدید قرار داده است. دیر زمانی ست که این مطلب که نور می تواند برای انتقال اطلاعات مورد استفاده قرار گیرد به اثبات رسیده است و بشر امروزه توانسته است که از سرعت فوق العاده آن به بهترین وجه استفاده کند.در سال ۱۸۸۰ میلادی الکساندر گراهام بل ۴ سال بعد از اختراع تلفن موفق به اخذ امتیاز نامه خود در زمینه مخابرات امواج نوری برای دستگاه خود با عنوان فوتو تلفن گردید.در ۱۵ سال اخیر با پیشرفت لیزر به عنوان یک منبع نور بسیار قدرتمند و خطوط انتقال فیبر های نوری فاکتور های جدیدی از تکنولوژی و تجارت بهتر را برای انسان به ارمغان آورده است.مخابرات فیبر نوری ابتدا به عنوان یک مخابرات از راه دور قرار دادی تلقی می شد که در آن امواج نوری به عنوان حامل یک یا چند واسطه انتقال استفاده می شد.با وجود آنکه امواج نوری حامل سیگنالهای آنالوگ بودند اما سیگنالهای نوری همچنان به عنوان سیستم مخابرات دیجیتال بدون تغییر باقی مانده است. از دلایل این امر می توان به موارد زیر اشاره کرد:۱)تکنیکهای مخابرات در سیستم های جدید مورد استفاده قرار می گرفت.۲)سیستم های جدید با بالاترین تلنولوژی برای داشتن بیشترین گنجایش کارآمدی سرعت و دقت طراحی شده بود.۳)انتقال به کمک خطوط نوری امکان استفاده از تکنیکهای دیجیتال را فراهم می ساخت. این مطلب نیاز انسان را به دسترسی به مخابره اطلاعات رابه صورت بیت به بیت پاسخگو بود.● توانایی پردازش اطلاعات در حجم وسیع:از آنجایی که مخابرات فیبر نوری دارای کارایی بالاتری نسبت به سیمهای مسی سنتی هستند بشر امروزی تمایل چندانی برای پیروی از سنت دیرینه خود ندارد و توانایی پردازش حجم وسیعی از اطلاعات در مخابره فیبر نوری او را مجذوب و شیفته خود ساخته است.● آزادی از نویز های الکتریکی:بافت یک فیبر نوری از جنس پلاستیک یا شییشه به دلیل رسانندگی انتخاب می شود.در نتیجه یک حامل موج نوری میتواند از پتانسیل موثر میدانهای الکتریکی در امان باشد.از قابلیت های مهم این نوع مخابرات می توان به امکان عبور کابل حامل موج نوری از میان یک میدان الکترومغناطیسی قوی اشاره کرد که سیگنالهای نام برده بدون آلودگی از پارازیت های الکتریکی و یا سیگنالهای مداخله گر به حد اکثر کارایی خود خواهند رسید. بانک اطلاعات مهندسی برق
موافقین ۰ مخالفین ۰ ۲۱ آبان ۹۰ ، ۱۱:۴۱
Shahram Ghasemi
ساده ترین سنسور برای آشکار سازی صدا یک میکروفن است . » میکروفن ها بسته به سیستم تبدیل داخلی شان به انواع مختلفی طبقه بندی میشوند که شامل انواع : دینامیک ، الکترو استاتیک و پیزو الکتریک می شوند. » میکروفن های دینامیک بیشتر در دنیای موزیک استفاده وسیعی دارند ، در حالی که میکروفن های پیزو الکتریک سیستم های اندازه گیری فرکانس های پائین (low-frequency sound-level meters) استفاده می شوند. » برای اندازه گیری، انواع میکروفونهای الکترواستاتیکی(خازنی) محبوب ترین نوع ها هستند زیرا در اندازه های بسیار کوچک قابل دسترس هستند، در یک رنج فرکانس ورودی وسیع  پاسخ فرکانسی یکنواختی دارند و بطور آشکارا پایداری بیشتری در مقایسه با دیگر انواع میکروفونها دارند. » انواع میکروفون های خازنی در 2 نوع در دسترس هستند: 1-  انواع بایاس (  bias)2- انواع back electretsتفاوت این 2 در نوع ولتاژ دهی است که آیا ولتاژ dc  از خارج داده شده است یا در عوض از سیستم فیلم پلیمری که به صورت دائمی قطبی شده است برای دادن ولتاژ استفاده شده است.در کل انواع بایاس حساسیت بیشتری دارند و پایدارتر هستند. » غلظت صدای میکروفن هاغلظت صدا اندازه گیری میزان " عبور انرژی یک واحد حجم بر واحد زمان است " و با واحد W/m2 شناخته می شود. میله های محافظ جلوی میکروفن برای گرفتن غلظت صدا بر واحد جریان به صورت واحد برداری طراحی شده اند.انواع مختلفی از میکروفن ها هستند که برای اندازه گیری میزان صدا و شدت صدا و جهت صدا هستند که خود از تعداد میکروفن های بیشتری تشکیل شده اند و کاربردهای خاص خود را دارند.در زمان جنگ ایران و عراق متخصصان ایرانی از سنسورهای صوتی به جای رادار در نقاط کور مرزی استفاده می کردند که موثر هم بود. میکروفن های جاسوسی که به کمک آنتن از فواصل دور صداها را دریافت می کنند. میکروفن های بیسیم که صدا ها را از طریق بیسیم منتقل می کنند. میکروفن بیسیم که از طریق USB  به کامپیوتر متصل می شود. موفق باشید » این مطلب توسط صادق R ترجمه شده است و هرگونه کپی برداری با ذکر نام منبع مجاز می باشد. » برای کپی مطلب بخش راهنمای کپی مطالب را مطالعه بفرمائید. سایت منبع اصلی مطلبhttp://www.engineershandbook.com/Components/soundsensors.htm Types of Sensors Introduction to Sensors Acceleration-Shock/Vibration Angular / Linear Position Chemical / Gas Humidity Flow Rate Force Magnetic Fields Pressure Proximity - Spatial Presence Sound Temperature Velocity
۱ نظر موافقین ۰ مخالفین ۰ ۲۱ آبان ۹۰ ، ۱۱:۳۲
Shahram Ghasemi
امروزه و در عصر پیشرفت تکنولوژی، کاربرد و استفاده از طیف‌های فرکانسی و امواج رادیویی در حال گسترش روزافزون است. مهم‌ترین مزیت این فناوری کاهش حجم اتصالات و وسایل رابط همچون سیم‌ها و کابل‌ها هستند که در نتیجه موجب کاهش چشم‌گیر هزینه‌ها می‌گردند. به طوری که روابط بدون سیم جایگزین مطمئن آنها می‌شوند. ارتباطات به وسیله امواج رادیویی، برپایه قوانین فیزیک و انرژی امواج الکترومغناطیسی استوار است. بدین منظور برخی مفاهیم اولیه مربوط به این موضوع را به اجمال از نظر می‌گذرانیم. * همه ما تاکنون عباراتی نظیر UHF, VHF, AM, FM و ... را شنیده‌ایم. فضای اطراف ما آکنده از امواج رادیویی است که در تمام جهات در حال انتشار و عبور و مرور می‌باشند. اصولا یک موج رادیویی یک موج الکترومغناطیسی می‌باشد که معمولا توسط آنتن منتشر می‌گردد. امواج رادیویی دارای فرکانس‌های مختلفی هستند، که برحسب کاربری مطابق با استانداردهایی تقسیم‌بندی شده‌اند. در آمریکا FCC کمیته ملی ارتباطات مسئولیت مدیریت و تصمیم‌گیری در مورد تخصیص طیف‌های فرکانسی و صدور مجوز و یا تعیین استانداردها را برعهده دارد. امواج رادیویی در هوا با سرعتی نزدیک به سرعت نور انتقال می‌یابند. این امر یکی از مهم‌ترین مزایای این فناوری می‌باشد که نقش بسزایی در تسریع ارتباط به عهده دارد. واحد اندازه ‌گیری فرکانس رادیویی hertz "هرتز" یا "سیکل بر ثانیه" است و برای فرکانس‌های بزرگ‌تر، جهت خواندن و نوشتن از عباراتی مانند khz "کیلوهرتز"، mhz "مگا هرتز" و ... استفاده می‌شود. در جدول  تقسیم بندی فرکانس‌ها برحسب واحد آمده است. امواج رادیویی دارای فرکانس‌ها و باندهای مختلفی هستنتد، به وسیله یک گیرنده مخصوص رادیویی شما می‌توانید، امواج مربوط به همان گیرنده را دریافت نمایید. برای مثال زمانی که شما مشغول گوش دادن به یک ایستگاه رادیویی هستید، گوینده فرکانس 91.5mhz و باند FM را اعلام می‌کند. رادیوی FM شما تنها می‌تواند گستره فرکانسی تخصیص یافته مربوط به خود را دریافت نماید. Wavelength یا طول موج یک سیگنال الکترومغناطیسی با فرکانس یا بسامد آن رابطه معکوس دارد، بدین معنی که بالاترین فرکانس کوتاه ‌ترین طول موج را دارا می‌باشد. در کل سیگنال‌های با طول موج‌های بلند تر مسافت بیشتری را می‌پیمایند و از قابلیت نفوذ بهتری در میان اجسام در برابر سیگنال‌های دارای طول موج کوتاه برخوردارند. مخفف باندها گستره فرکانس تقسیمات نمادها b.mam 30KHZ-3 امواج۱۰ هزارمتری VLF b.km 300khz-30 امواج کیلومتری LF b.hm 3000khz-300 امواج هکتامتری FM b.dam 30mhz-3 امواج دکامتری HF b.m 300MHz-30 امواج متری VHF b.dm 3000MHz-300 امواج دسیمتری UHF b.cm 30GHz-3 امواج سانتیمتری SHF b.mm 300GHz-30 امواج میلیمتری EHF   3000GHz-300 امواج دسیمیلیمتر   در زیر بخشی از کاربردهای این امواج با ذکر محدوده فرکانسی آمده است: رادیوهای AM : 535 khz تا 1.7 mhz رادیوهای موج کوتاه: 509 mhz تا 26.1 mhz رادیوهای باند شهری: 26.96 mhz تا 27.41 mhz رادیوهای FM : 88 mhz  الی108 mhz و برخی تقسیمات جزئی‌تر عبارتند از: سیستم‌های دزدگیر، دربازکن بدون سیم پارکینگ و ... : در حدود 40 mhz تلفن‌های بدون سیم متداول: در حدود 40 mhz الی 50 mhz هواپیماهای مدل کنترلی: در حدود 72 mhz ماشین‌های اسباب‌بازی رادیو کنترلی: درحدود 75 mhz گردنبند ردیابی حیوانات: 215 mhz الی 220 mhz تلفن‌های سلولی (مانند موبایل): 824 mhz الی 849 mhz تلفن‌های جدید بدون سیم: در حدود 900 mhz سیستم‌های موقعیت‌یاب ماهواره‌ای: 1.227 mhz الی 1.577 mhz   دردسته بندی امواجی که قبلا ذکر شد هر گروه کاربردهای خاص خود را دارد در زیر برخی از آنها آمده است : ۱-متحرک هوانوردی ۲-ناوبری رادیویی ۳- آماتور ۴-آماتور ماهواره ای ۵-پخش همگانی صدا ۶- متحرک خشکی ۷-متحرک دریایی ۸- هواشناسی ماهواره ای ۹-تعیین موقعیت رادیویی و ماهواره ای ۱۰-تحقیقات فضایی ۱۱-پخش تصاویر تلویزیونی و غیره... که خود نیز دارای دسته بندی هستند.  یک موج رادیویی یک موج الکترومغناطیسی است که میتواند بوسیله یک آنتن انتشار یابدوهمانطور که میدانید امواج رادیویی فرکانسهای متفاوتی دارند  یکی از  سوالهای ابتدایی شما ممکن است این باشد که چرا برخی از امواج و فرکانسهایی که حتی بر روی یک باند مشترک منتشر می شوندمثلا باند "FM" چرا  بوسیله رادیوهای گیرنده خانگی قابل دریافت نمی باشند؟ پاسخ این است که گیرنده خانگی شما فقط میتواند باندهاوفرکانسهایی را که کارخانه سازنده از پیش برای آن تعیین کرده و مثلا برای موج  FM    بین  88 megahertz  تا   108 megahertz    می باشد را دریافت نماید.    تعداد دیگری از دسته بندیهای فرکانسی را مشاهده مینمایید:     AM radio: 535 kilohertz to 1.7 megahertz  Short wave radio: bands from 5.9 megahertz to 26.1 megahertz Citizens Band (CB) radio: 26.96 megahertz to 27.41 megahertz Television stations: 54-88 megahertz for channels 2-6 FM radio: 88 megahertz to 108 megahertz Television stations: 174-220 megahertz for channels 7-13 Garage door openers, alarm systems, etc.: around 40 megahertz Standard cordless phones: Bands from 40 to 50 megahertz Baby monitors: 49 megahertz Radio controlled airplanes: around 72 megahertz, which is different from... Radio controlled cars: around 75 megahertz Wildlife tracking collars: 215 to 220 megahertz MIR space station: 145 megahertz and 437 megahertz Cell phones: 824 to 849 megahertz New 900 MHz cordless phones: Obviously around 900 megahertz! Air Traffic Control radar: 960 to 1,215 megahertz Global Positioning System: 1,227 and 1,575 megahertz Deep space radio communications: 2290 megahertz to 2300 megahertz منبع: http://inventive.blogsky.com/?PostID=108
موافقین ۰ مخالفین ۰ ۲۱ آبان ۹۰ ، ۰۴:۳۵
Shahram Ghasemi
در پی بروز زلزله و سونامی هولناک اخیر در ژاپن و برجاگذاشتن ویرانی‌های عظیم و صدها کشته و مفقود، فناوری مدرن این کشور برای ردیابی بازماندگان فاجعه و تعدیل خسارات تا جای ممکن به کمک آنها آمده است  زلزله شناسان همچنان از پیشگویی زمین‌لرزه حتی در بازه‌های زمانی طولانی ناتوانند بنابراین بهترین کار ممکن در حال حاضر توسعه تاکتیک‌های جست‌وجو و نجات پس از زلزله است.دو منطقه زلزله‌خیز جهان به صورت بسیار جالبی جزء دو قدرت بزرگ مهندسی روباتیک هستند. کشور ژاپن در حلقه آتش اقیانوس آرام واقع شده که در آن صفحات تکتونیکی اقیانوس آرام و اروپایی‌آسیایی با هم برخورد می‌کنند. این کشور به طور متناوب در خطر زلزله قرار دارد. از این رو به عنوان یکی از قدرت‌های فنی دنیا به ساخت دستگاه‌های خاص مواقع زلزله پرداخته است.این امید وجود دارد که دستگاه‌های پیشرفته‌ای مانند آنچه در این گزارش آمده بتوانند آثار تخریبی زلزله را در آینده کاهش دهند.منطقه دیگر زلزله‌خیز دنیا کالیفرنیای امریکا است که محققان آنجا هم به فناوری‌های فوق‌العاده‌ای برای مقابله با اثرات زلزله دست یافته اند. روبوکو، روبات امدادی اداره آتش‌نشانی توکیواین روبات برای مکان‌یابی و بازیابی سالم مجروحان از مکان‌های حادثه‌دیده به ویژه محل‌های بمب‌گذاری شده طراحی شده ‌است، اما از آن می‌توان برای حوادث طبیعی نیز استفاده کرد.این روبات برای مکان‌یابی انسان‌ها از حسگرهای مافوق‌صوت استفاده کرده، سپس به آرامی مجروح را به یک وسیله نقلیه برای انتقال آن به محل امن منتقل می‌کند. روبوکو همچنین از یک کپسول اکسیژن برخوردار است. روبات هشت متری مارشکلاین روبات بیشتر در بخش جست‌وجو کاربرد دارد. این روبات هشت متری خود را با سیخ‌های نایلونی موتوری به جلو می‌راند.روبات هشت متری مارشکلاین روبات تنها می‌تواند چهار سانتی‌متر در ثانیه حرکت کند اما در زاویه‌های تیز وارد شده، از شیب‌های 20 درجه بالا رفته و خود را از شکاف‌های کوچک عبور می‌دهد. این روبات از چشمان دوربینی برخوردار است که می‌تواند تصاویر محل را برای محققان فرستاده و آنها را از موقعیت آگاه کند.روبات امنیتی خزنده این روبات که تا حد زیادی به یک تابوت تانک ‌شکل تشابه دارد در حقیقت کاربردی کاملا متفاوت داشته و قادر است در هر زمان یک مجروح را به جای امن انتقال دهد. این روبات که برای اداره پلیس یوکوهامای ژاپن ساخته شده، قادر است یک فرد 113 کیلوگرمی را در یک پوسته ایمنی جابجا کند.این روبات خزنده از قابلیت کنترل از راه دور و همچنین از حسگرهایی برخوردار است که بر جریان خون و سایر علائم حیاتی مجروح نظارت می‌کند.امدادگر اسکیت‌سوار پرفسور شیگئو هیروسه در موسسه فناوری توکیو دست به ساخت روباتی زده که زیست‌شناسی ارگانیک را برای شناسایی راه بهتر حمل و انتقال بررسی می‌کند. هنگامی که این روبات مجبور به حرکت در زمین‌های ناهموار می‌شود، پاهای آن برای کار در شرایط خاص هماهنگ می‌شود.در زمین‌های صاف نیز پاهای آن به صورت چرخ‌دار درآمده و حرکت آن را ساده‌تر و سریع‌تر می‌کند.حسگر تنفسی روبات کوئینس، روباتی کوچک اما کاراست که توسط موسسه فناوری چیبا ساخته شده است. این روبات از چهارچرخ و شش موتور الکتریکی و همچنین یک بازوی موتوری با قابلیت جابجایی غذا و سایر تدارکات برخوردار است.کوئینس همچنین از حسگرهای مادون‌قرمز و دی‌اکسیدکربن برای تشخیص تنفس و گرمای بدن انسان برخوردار است
موافقین ۰ مخالفین ۰ ۲۱ آبان ۹۰ ، ۰۴:۳۵
Shahram Ghasemi
تقویت کننده های عملیاتی، تقویت کننده های کوپل مستقیم بوده، که دارای گین (Gian) خیلی زیادی می باشند. که مقدار این گین را با کمک مقاومت فیدبک ( مقاومتی که بخشی از ولتاژ و یا جریان خروجی را به ورودی منتقل می کند) می توان کنترل نمود. این تقویت کننده ها اکثراً در مدارات خطی بکار می روند و اغلب در مدارات غیرخطی نیز از آنها استفاده می شود. یک تقویت کننده عملیاتی ایده آل بایستی شرایط زیر را دارا باشد. 1) مقاومت ورودی آن بی نهایت باشد (Zi=Ri= ∞). 2) مقاومت خروجی آن صفر باشد (Zo=Ro= 0). 3) گین ولتاژ حلقه باز آن بی نهایت باشد (Av= -∞). 4) عرض باند آن بی نهایت باشد (BW= ∞). 5) هنگامی که اختلاف ولتاژ در ورودی صفر است، ولتاژ خروجی نیز صفر باشد. 6) منحنی مشخصه آن با درجه حرارت تغییر نکند. در شکل زیر نحوه قرار گیری بعضی از پارامترهای فوق در مدار معادل یک تقویت کننده عملیاتی را می بینید.   اما تحت تاثیر عوامل محیطی و طراحی و قطعات هیچ یک از پارامترهای فوق به شکل کامل قابل دسترسی نیست. و این تفاوت بین تقویت کننده های عملیاتی را باعث می شود. تقویت کننده های عملیاتی اکثراً بصورت مدار مجتمع ساخته می شوند. اتصالات تغذیه تقویت کننده های عملیاتی برای استفاده از رنج کامل تقویت کننده های عملیاتی، بایستی این تقویت کننده ها با دو منبع تغذیه بایاس شوند، که این عمل معمولاً با استفاده از دو منبع تغذیه مجزا صورت می گیرد. ولتاژ منبع اول نسبت به زمین (GND) برابر +VBB بوده در حالیکه ولتاژ منبع دوم نسبت به زمین برابر –VBB می باشد که غالباً مقدار این ولتاژها +15 ولت و -15 ولت انتخاب می شود. این عمل برای ایجاد بایاس کامل و بودن نقص می باشد. چرا که مدارات داخلی آی سی به گونه ای طراحی شده اند که جهت بدست آوردن بهترین دقت و ایجاد تقارن بین تقویت کنندگی مثبت و منفی نیاز به هر دو سطح منفی و مثبت ولتاژ می باشند. معمولاً تقویت کننده های عملیاتی جهت تغذیه دو پایه دارند، چون زمین به تقویت کننده عملیاتی وصل نمی شود و فقط ولتاژهای +VBB و –VBB به تقویت کننده عملیاتی متصل می شود. ولی با وجود این تمام اتصالاتی که بایستی زمین (GND) شوند، به نقطه بین دو منبع تغذیه زمین وصل می گردند. البته در تمامی مداراتی که طراحی می شوند امکان دریافت 2 سطح ولتاژ از منبع تغذیه امکان پذیر نیست. به همین دلیل طراحی گونه ای از ای سی ها به نحوی است که امکان پاسخ گویی با یک سطح ولتاژی را دارند. که در این وضعیت تنها یک سطح از ولتاژ ورودی (تنها مثبت و یا منفی) مورد پردازش قرار می گیرد. البته باز هم با بکارگیری شیوه هایی ولتاژ 0 مجازی ایجاد می کنند. به این ترتیب که ولتاژ مثبت و منفی تغذیه را به پایه های تغذیه آی سی متصل می کنند و توسط یک مدار جانبی و لتاژی برابر نصف ولتاژ تغذیه با امپدانس خروجی پایین ایجاد کرده و به عنوان ولتاژ مجازی صفر ولت بکار می برند. همچنین هر تقویت کننده عملیاتی دو ورودی دارد؛ یکی ورودی مثبت که با V+ و دیگری ورودی منفی که با V- نشان داده می شود. یک تقویت کننده از قطعات ساده مقاومت خازن دیود ترانزیستور یا FET ها ساخته می شود. تقریبا در بین انواع مختلف opamp ها اصولی در طراحی رعایت شده و پیکربندی نزدیکی دارند. هر بخش از opamp را می توان به شکل بلوکهای به هم متصل نشان داد. در شکل زیر مدار داخلی یک نمونه بسیار ساده که در ان تمامی این بخشها قابل روئیت است ، نشان داه شده است. این مدار از 2 ترانزیستور ورودی با اتصال تفاضلی تشکیل می شود که جریان تغذیه آن توسط شبکه ترانزیستور و دیود زنر و مقاومت در پایین شبکه تفاضلی ، بدست می آید. یک تقویت کننده امیتر مشترک نقش شبکه تقویت کنندگی و افزایش سطح ولتاژ را بازی می کند. توسط ترانزیستور PNP این سیگنال ضمن تطبیق امپدانس و بافر کردن وارد ترانزیستور بایاس شبکه پوش پول طبق آخر ، جهت رسیدن به قدرت مناسب و کاهش امپدانس خروجی می شود. شکل تقویت کننده های عملیاتی و قراردادها تقویت کننده های عملیاتی به دو صورت یکی با ولتاژ تغذیه و دیگری بدون ولتاژ تغذیه نشان داده می شوند. در شکل (ب) اتصالات منابع تغذیه که بالایی ولتاژ تغذیه مثبت (+VBB) و پایینی ولتاژ تغذیه منفی(-VBB) است نشان داده شده و در شکل (الف) اتصالات منابع تغذیه حذف شده است. که هر دو سمبل، نشان دهنده شکل تقویت کننده عملیاتی می باشد. در این سمبل ها یکی از ورودیها با علامت (+) و دیگری با علامت (-) مشخص شده است، که ورودی با علامت (+) را ورودی مثبت و ورودی با علامت (-) را ورودی منفی تقویت کننده عملیاتی گویند. ولتاژ تفاضلی تقویت کننده های عملیاتی ولتاژ تفاضلی تقویت کننده های عملیاتی بصورت زیر تعریف می شود. Vd= V+ - V- اختلاف ولتاژ بین ورودی مثبت و ورودی منفی تقویت کننده عملیاتی را ولتاژ تفاضلی گویند. تقویت کننده های عملیاتی اکثراً با گین تفاضلی (حلقه باز) مشخص می شوند، که معمولاً گین این تقویت کننده ها با ورودیهای DC و در فرکانس های خیلی کم، بیش از 100000 می باشد و مقدار این گین را با Ad نشان می دهند. ولتاژ خروجی تقویت کننده های عملیاتی در حالت ایده آل بصورت زیر می باشد. Vo= Ad (V+ - V-) = Ad . Vd بنابراین پاسخ خروجی تقویت کننده عملیاتی به اختلاف ولتاژ بین ورودیها بستگی دارد چرا که اساس تقویت کننده های عملیاتی، تقویت کننده های تفاضلی می باشند. در هنگام استفاده از تقویت کننده های عملیاتی، بایستی به پایه های ورودی مثبت و منفی آن دقت کافی داشت تا اشتباه وصل نشوند. ولتاژ اعمالی به پایه های ورودی مثبت و منفی تقویت کننده عملیاتی می تواند ولتاژی با دامنه مثبت یا منفی باشد. اگر ولتاژ به ورودی مثبت اعمال شود تقویت کننده عملیاتی در حالت ورودی مستقیم بوده و اگر ولتاژ به ورودی منفی اعمال شود، تقویت کننده عملیاتی در حالت ورودی معکوس خواهد بود. اشباع اگر ولتاژ خروجی تقویت کننده تحت تاثیر ورودیها در مقدار حداکثر و یا حداقل ولتاژ تغذیه آن برسد اشباع گویند. ولتاژ اشباع مثبت: ماکزیمم ولتاژ مثبتی که خروجی تقویت کننده عملیاتی می تواند داشته باشد، که در حالت ایده آل برابر ولتاژ تغذیه مثبت (+VBB) است، به ولتاژ اشباع مثبت تقویت کننده عملیاتی معروف است، که با +Vsat نشان می دهیم. در عمل جهت احتیاط ولتاژی حدود یک تا دو ولت کمتر از مقدار تغذیه را در نظر می گیرند. ولتاژ اشباع منفی: ماکزیمم ولتاژ منفی از نظر قدر مطلق که خروجی تقویت کننده عملیاتی می تواند داشته باشد، که در حالت ایده آل برابر ولتاژ تغذیه منفی(-VBB) است به ولتاژ اشباع منفی تقویت کننده عملیاتی معروف است که با –Vast نشان می دهیم. . در عمل جهت احتیاط ولتاژی حدود یک تا دو ولت بیشتر از مقدار تغذیه را در نظر می گیرند. چون در عمل تقویت کننده های عملیاتی ایده آل نیستند لذا ولتاژ اشباع مثبت همیشه کمتر از ولتاژ تغذیه مثبت بوده و ولتاژ اشباع منفی از نظر قدر مطلق کمتر از ولتاژ تغذیه منفی می باشد. |-Vsat|
موافقین ۰ مخالفین ۰ ۲۱ آبان ۹۰ ، ۰۴:۳۵
Shahram Ghasemi
به خاطر پیچیدگی مدارات VHF/FM ، پیشنهات می کنم ابتدا درباره سیستمهای MW/LW صحبت کنیم. اطلاعات در این بخش به شما کمک می کند تا درباره مدارات AM و(MW/LW) RF و IF بیشتر بدانید.   2 تفاوت اصلی بین سیستمهای پخش کننده MW/LW (AM)   و  VHF (FM)  وجود دارد.که در نامهایشان نیز مشهود است.فرکانس های سیگنال های رادیو یی  VHF در فرکانس های بالاتری حدود 100MHz ارسال می شوندو فرکانس های MW روی 1.6MHz ارسال می شوند. رادیو های VHF از مودولاسیون فرکانس استفاده می کنند و MW/LW از مودولاسیون دامنه استفاده می کنند . بنابراین ما از 2 بخش اصلی استفاده می کنیم  mixer-oscillator و  the detector .  بلاک دیاگرام بالا یک دریافت کننده AM/FM را نشان می دهد. قطعاتی که در AM کاربرد دارند در پایین نمایش داده شده اند.در مدارات VHF/FM 2 ترانزیستور اضافی در مدار هستند که نقش تقویت کننده امواج رادیویی(RF amplifier) را دارند و نوسان گر/ مخلوط ساز (mixer-oscillator)را دارند. ترانزیستوری که به عنوان یک (mixer-oscillator) در یک AM استفاده می شد در یک FM می شود اولین تقویت کننده فرکانس میانی(first IF amplifier) که در FM سه طبقه تقویت IF  وجود دارد . IF  در VHF دارای یک فرکانس بالاتر در حدود 10.7MHz است که درAM  این مقدار 470kHz   است. به خاطر وجود مدولاسیون متفاوت یک مدار آشکار ساز متفاوت نیز در FM  استفده میشود. بخش های صوتی و تقویت کننده های نهایی در هر دو یکسان هستند. -------------------------------------------------------------------------------- نوسانگر/مخلوط کننده VHF تقویت کننده امواج رادیویی و نوسانگر/مخلوط کننده که در فرکانس بالایی کار میکنند در شکل زیر خلاصه شده اند .   اولین ترانزیستور یک تقویت کننده امواج رادیویی است که به صورت بیس مشترک در مدار قرار گرفته است تا به ما بالاترین بهره را بدهد. تقویت کننده امواج رادیویی 2 هدف را دنبال می کند ، در ابتدا یک موج را قبل از رسیدن به نوسانگر/مخلوط کننده تقویت می کند. و دوما یک جداکننده بین (mixer-oscillator) و مدار است، که از درگیری فرکانس اسیلاتور و تجهیزات جلوگیری می کند.   دومین ترانزیستور هم به صورت بیس مشترک کار می کند،به دلیل اینکه ترانزیستور در محدوده رنج فرکانسی اش کار می کند اختلاف فاز بین کلکتور و امیتر حدود 90 درجه است. به همین دلیل مدار نوسان ساز احتیاج به 90 درجه اختلاف فاز برای تولید نوسان دارد.   L3  و  L5 کنترل کننده انتخاب فرکانس دلخواه هستند(tuning) . سلف های متغیر در تمامی دستگاههای VHF استفاده می شوند، گاهی اوقات از خازن های متغیر و سلف های ثابت نیز استفاده می شوند. L3و خازن های موازی با آن تقویت کننده امواج رادیویی را نسبت به سیگنال دریافتی مناسب تنظیم می کنند. L5و خازن های آن فرکانس نوسان ساز داخلی را دقیقا 10.7 MHz بالای سیگنال دریافتی تنظیم می کنند.یک دیود تضعیف ممکن است به L3 متصل شود برای اینکه از  overloading  امواج رادیویی تقویت شده از منابع ارسال شده پر قدرت  در بخش اسیلاتور/مخلوط ساز جلوگیری به عمل بیاید.   امواج دریافت شده و نوسان شده با هم مخلوط می شوند همانطوری که برای مدارات AM به عنوان یک فرکانس میانی 10.7MHz در اولین ترانسفورمر(L6/L7) .   تقویت کننده امواج رادیویی VHF و مخلوط کننده/نوسان ساز که معمولا با نام "VHF front-end" نامیده می شوند. تمام مدار وقتی کار می کند که دستگاه روی VHF تنظیم شده باشد. توان توسط بخشی که waveband یا طول موج نامیده می شود سوئیچ می شود.در این مدار ترانزیستورهای OC171 در هر دوی وضعیت ها استفاده می شوند. در اکثر دستگاه ها تقویت کننده امواج رادیویی AF114 خواهد بود و مخلوط کن/نوسان ساز یک  AF115  خواهد بود.  -------------------------------------------------------------------------------- تقویت کننده میانی VHF این مدار یک نمونه از تقویت کننده IF  را نمایش می دهد که به صورت (Ekco/Pye/Invicta diagram)  مرتب سازی شده است. VT4  و  VT5 تقویت کننده های فرکانس میانی AM  (AM IF amplifiers)هستند. دو ترانسفرمر  IF  وجود دارد یکی برای 470kHz و دیگری برای 10.7MHz که سیم پیچ ها ی اولیه و ثانویه به صورت سری بسته شده اند.   به منظور استفاده از AM mixer-oscillator (VT3) به عنوان یک IF amplifier در VHF نیاز است که oscillator غیر فعال شود. این موضوع حاصل می شود توسط بایپس کردن مقاومت امیتر  توسط یک خازن (C21) بنابراین آن بخش نمی تواند در حالت  بیس مشترک کار کند ،گه از اتصالات  کلید(SW1F)  استفاده می نماید. ورودی این بخش به خروجی بخش VHF mixer-oscillator متصل است. در ضمن فرکانس میانی اولیه وی اچ اف (VHF IF primary) باید بای پس شود وقتی که دستگاه کار می کند در حالت AM  در حالت دیگر اسیلاتور به طور قابل اعتماد کار نخواهد کرد.در این مدار این کار توسط کلید SW2A (MW) و  SW3A (LW)  فعال خواهد شد.      -------------------------------------------------------------------------------- » آشکار ساز مدولاسیون فرکانس این دیاگرام تفاوت بین مدولاسیون دامنه (a)  و مدولاسیون فرکانس(b) را نمایش می دهد.    از انجا که دامنه یک موج FM ثابت است ، آشکار ساز تک دیودی که برای  AM کار می کند برای FM  کار نخواهد کرد. برای آشکار سازی FM  ما به تبدیل تغییرات فرکانس به تغییرات یک ولتاژ نیاز دایم ، که کمی از AM  پیچیده تر است.   انواع مختلفی از مدارات آشکار ساز  FMوجود دارد که معمول ترین آنها "آشکار ساز نسبت ("ratio detector")" است که در اینجا نمایش داده شده است.  شرح کامل مقاله را از منبع زیر بگیرید...   منبع مطلب: http://www.vintage-radio.com/repair-restore-information/transistor_vhf-sets.html
موافقین ۰ مخالفین ۰ ۲۱ آبان ۹۰ ، ۰۴:۳۵
Shahram Ghasemi
سازمان تنظیم مقررات و ارتباطات رادیویی با استناد به ماده 7 قانون وظایف و اختیارات وزارت ارتباطات و فنآوری اطلاعات مصوب 19/9/1382 مجلس شورای اسلامی از تجمیع معاونت امور مخابراتی وزارت ارتباطات و فنآوری اطلاعات و اداره کل ارتباطات رادیویی، به منظور ایفای وظایف و اختیارات حاکمیتی، نظارتی و اجرایی در بخش تنظیم مقررات و ارتباطات رادیویی وابسته به وزارت ارتباطات و فنآوری اطلاعات تاسیس شده است. این سازمان یک نهاد مستقل قانونگذار و نظارتی است که نقش آن رقابتی کردن بازار ارائه خدمات مخابراتی و بالا رفتن کیفیت خدمات آنهاست. میزان اهمیت ونقش به سزای این نهاد در رونق بخش خصوصی از وظایفی که بر مبنای اساس نامه بر عهده آن گذاشته شده است مشخص می باشد.   سازمان تنظیم مقررات و ارتباطات رادیویی به منظور اجرای مصوبات کمیسیون تنظیم مقررات و ارتباطات و تحقق اهداف و ایفای وظایف مورد نظر در بخش ارتباطات رادیویی تاسیس شده و رئیس این سازمان معاون وزیر است.   اساسنامه تشکیلات سازمان مناطق سازمان مدیران سازمان » حتما مقررات استفاده از مسدود کننده های تلفن همراه در ایران را مطالعه بفرمایید.   مصوبه مسدود کننده های فرکانس رادیویی http://www.cra.ir/EArchive/EArchiveF/Item.asp?ParentID=312&ItemID=1299   آدرس وبسایت http://www.cra.ir
موافقین ۰ مخالفین ۰ ۲۱ آبان ۹۰ ، ۰۴:۳۵
Shahram Ghasemi
زیرسیستم های مهم در یک ربات صنعتی عبارتند از: 1-     سینماتیک 2-     کنترل 3-     قوای محرکه   - سینماتیک سینماتیک ربات چگونگی حرکت نسبی بین اجزای مختلف ربات و نحوه قرارگیری آنها را مشخص می کند. چهار نوع حرکت اساسی در رباتهای صنعتی وجود دارد که عبارتند از:   الف) دکارتی ب) استوانه ای ج) کروی د) بازویی این چهار حرکت در شکل 1 نشان داده شده اند.  الف) حرکت دکارتی : رباتهایی که از این سیستم حرکتی استفاده می کنند از یک ستون ثابت و یک بازوی متحرک و دوتکه L شکل، تشکیل شده اند. به این رباتها، رباتهای XYZ نیز گفته می شود. همان طور که در شکل مشاهده می شود نحوه اتصال و یاتاقان بندی اجزا به گونه ای است که تکه دوم بازو، قابلیت حرکت در سه راستای طولی، عرضی و ارتفاعی را دارد. موارد استفاده از این حرکت در شکل 1 مشخص گردیده است. ب) حرکت استوانه ای : رباتهای با حرکت استوانه ای متشکل از یک صفحه ثابت و یک ستون گردان هستند. روی ستون گردان بازویی نصب شده که قابلیت حرکت در جهت عمود بر ستون را دارد. با ترکیب حرکات فوق بازو را می توان به هر نقطه ای در فضای سه بعدی هدایت کرد. ج) حرکت کروی : یک تیر که به صورت تلسکوپی باز و بسته می شود و با اتصال کاسه ساچمه ای به یک صفحه ثابت متصل شده است، اساس چنین حرکتی را شکل می دهد. این سیستم حرکتی انعطاف بیشتری نسبت به سیستم های قبلی دارد. د) حرکت بازویی : این سیستم الهام گرفته از حرکت بازوی انسان است. بازو به صورت دو تکه، سه تکه ویا بیشتر ساخته می شود و در جهاتی که در شکل نشان داده شده قابلیت حرکت وجود دارد. این سیستم کارایی بیشتری نسبت به انواع قبلی دارد و موارد استفاده آن در شکل 1 نشان داده سده است.   مشاهده عکس   - سیستم کنترل سیستم کنترل ربات یک تسلسل منطقی برای ربات ایجاد می کند که ربات ملزم به اجرای آن است. برای مثال برای کنترل حرکت ربات سیستم کنترل، مختصات مورد نظری که ربات باید در هر مرحله به آن دست یابد را با مختصات واقعی ربات در آن مرحله مقایسه می کند. با استفاده از این اختلاف و منطق حاکم برسیستم کنترل، کنترلر فرمانهای لازم برای اصلاح حرکت را صادر می کند. مشاهده عکس دو نوع اساسی سیستم های کنترل حرکت در رباتهای صنعتی عبارتند از:  1-     سیستم کنترل نقطه به نقطه : در این سیستم مختصات نقاط شروع و پایان حرکت به ربات داده می شود و سپس سیستم کنترل بهترین مسیر بین این دو نقطه را تعیین کرده و فرمان های لازم را صادر می کند. از این سیستم زمانی استفاده می شود که مسیر حرکت بین نقاط شروع و پایان اهمیتی نداشته باشد، مثلا رباتهای باربر.  2-     سیستم کنترل حرکت پیوسته : از این سیستم زمانی استفاده می شود که بخواهیم بازوی ربات مسیر از پیش تعیین شده ای را به دقت بپیماید. در سیستم کنترل مسیر از پیش تعیین شده به صورت تعداد زیادی از نقاط مجاور یکدیگر مشخص می گردد و در حین کار ربات نقاط فوق را تعقیب می کند. از این سیستم در رباتهای جوشکار، نقاش و ... که مسیر حرکت در آنها مهم است استفاده می شود.  - قوای محرکه سیستم های مورد استفاده در قوای محرکه رباتهای صنعتی شامل : 1-     سیستم های الکتریکی : در این سیستم ها از سرو موتورها، استپ موتورها و پالس موتورها استفاده می شود. این موتورها انرژی الکتریکی را به انرژی مکانیکی مورد نیاز ربات تبدیل می کنند. 2-     سیستم های نیوماتیکی : دراین سیستم ها از هوای فشرده به عنوان منبع توان استفاده می شود. بنابراین در محل استفاده از این سیستم باید خطوط هوای فشرده وجود داشته باشد. کنترل سرعت و موقعیت در این سیستم اندکی پیچیده تر است.  3-     سیستم های هیدرولیکی : این سیستم ها از سیستم های فوق مرسوم تر هستند زیرا جک ها و موتورهای هیدرولیکی علاوه بر توانایی اعمال نیروهای بزرگ، اندازه کوچکی داشته و با دقت زیاد قابل کنترل می باشند. در این سیستم ها با استفاده از فشار روغن، حرکت گردشی یا حرکت خطی ایجاد می گردد.
موافقین ۰ مخالفین ۰ ۲۱ آبان ۹۰ ، ۰۴:۳۵
Shahram Ghasemi
چشم الکترونیکی دستگاهی است دقیق،ظریف و حساس برای کنترل حرکت و جابجایی اشیا یا افراد توسط نور. کافیست دستگاه را در محل مورد نظر نصب کنید و ترتیبی دهید که نور به مقدار لازم به سلول حساس دستگاه بتابد. به محض آنکه فرد یا شیئی از مقابل دستگاه عبور کند یا جابجا شود، بطوری که تابش نور به سلول حساس کاهش یابد و یا متوقف شود ، دستگاه فورا واکنش نشان میدهد و صدای بوق قوی از بلندگو پخش میشود.این دستگاه با ولتاژ 6 ولت کار میکند و مصرف آن در حالت بی کاری نزدیک به صفر است. بنابراین حتی اگر باتری خشک به آن وصل کنید ، مدتها دوام می آورد. ضمنا یک پتانسیومتر تنظیم حساسیت روی فیبر تعبیه شده است که به کمک آن میتوانید دستگاه را برای استفاده در شرایط نوری مختلف به دقت تنظیم نمایید. دستگاه چشم الکترونیک کاربردهای گوناگونی دارد که از جمله میتوان به کاربرد آن به عنوان دزدگیر در موسسات و منازل و اتومبیل ها اشاره کرد. ضمنا برای کنترل مسیر ها جهت آگاهی از ورود و خروج افراد نیز به کار می رود. نخستین بخش مدار را یک مولتی ویبراتور مرکب از ترانزیستورهای Tr2 و Tr3 تشکیل میدهد. مقدار خازنهای C1 و C2 طوری انتخاب شده است که سیگنالهای صوتی ثابتی با فرکانس حدود یک کلیو سیکل ایجاد میکند. این سیگنالها در پایه کلکتور ترانزیستور Tr3 قابل دریافت است و اگر یک گوشی کریستالی به پایه مذبور وصل کنید، سیگنالها را به صورت صدای سوت میشنوید. دومین بخش مدار، یک آمپلیفایر صوتی دو ترانزیستوری مرکب از ترانزیستورهای Tr4 و Tr5 است که به صورت مستقیم به یکدیگر وصل شده اند. ترانزیستور Tr4 که یک ترانزیستور تیپ مثبت PNP است، سیگنالهای صوتی را از طریق خازن C3 دریافت میکند و پس از تقویت سیگنالها، آنها را برای تقویت نهایی ( تقویت قدرت) به ترانزیستور Tr5 میدهد. پایه B ترانزیستور Tr1 از طریق سلول فوتورزیستانس Cds به ولتاژ مثبت وصل شده است و در حالتی که نور به صفحه Cds بتابد، مقاومت آن کاهش یافته ولتاژ مثبت قابل توجهی به پایه B میرسد و ترانزیستور را در حالت خاموشی نگهمیدارد که در این حالت ولتاژ تغذیه مولتی ویبراتور قطع است و کار نمیکند و لذا هیچ صدایی از بلندگو پخش نمیشود. اما همینکه مانعی بر سر راه تابش نور به Cds ایجاد شود، مقاومت آن افزایش می یابد و ولتاژ مثبت پایه B کاسته شده و در عوض پایه B از طریق پتانسیومتر Pot و مقاومت R1 ولتاژ منفی دریافت میکند که در نتیجه مدار مولتی ویبراتور به کار می افتد و صدای بوق از بلندگو پخش میشود. با تنظیم پتانسیومتر( مقاومت متغییر) میتوان ولتاژ پایه B ترانزیستور Tr1 را برای شرایط نوری مختلف به دقت تنظیم نمود.
موافقین ۰ مخالفین ۰ ۲۱ آبان ۹۰ ، ۰۴:۳۵
Shahram Ghasemi